Characterization of Anopheles funestus Larval Habitats in Fiyoni, Kwale County, Kenya: Insights into Malaria Vector Ecology and Control
DOI:
https://doi.org/10.17161/eurojecol.v9i2.21173Keywords:
Malaria Vector, Anopheles funestus, Habitat-Parameters, Fiyoni, KenyaAbstract
The breeding of malaria-spreading vectors such as Anopheles funestus is influenced by various environmental factors that contribute indirectly to the transmission of the Plasmodium parasite. However, there is limited knowledge of larval habitat ecology that hinder prevention and control of mosquito-borne diseases. This study aimed to characterize larval habitats based on physicochemical and habitat characteristics, considering the abundance of A. funestus. A cross-sectional survey method was used to collect data on the established transects. Physical parameters (water temperature, pH, conductivity, and total dissolved solids) were measured using a 5-in-1 meter probe. Levels of chemical parameters (sulphate, COD, and BOD) were determined in the laboratory using standard methods. Observations were also made on habitat characteristics (including watercolor, habitat size, and canopy). There was significant effect (P<0.05) of conductivity, pH, sulphate, COD, and BOD on the number of A. funestus larvae. Water samples with a high population of A. funestus larvae were found to have higher conductivity (Me of 470.5), TDS (Me = 235), and pH levels (Me of 6.71). Conversely, water samples with a high population of non-Anopheles funestus larvae were found to have higher COD (Me of 843.20), BOD (Me of 367.2), and SO4 levels (Me of 11.3). A significant correlation (p<0.5) existed between A. funestus larvae and physical water parameters. For instance, Anopheles funestus larvae was high (Me of 36.85) in stagnant water and in semi-permanent water (Me of 47.37). The study demonstrates that both physicochemical and habitat parameters significantly influence the abundance of Anopheles funestus larvae in larval habitats. Parameters such as conductivity, pH, total dissolved solids, sulphate, COD, BOD, watercolor, depth, distance from the homestead, and habitat size were found to be important in determining the presence of A. funestus larvae. Therefore, vector control strategies should include larval source management by targeting rivers and other water bodies to prevent the emergence of Anopheles funestus.
References
Abba, S. I., & Elkiran, G. (2017). Effluent prediction of chemical oxygen demand from the wastewater treatment plant using artificial neural network application. Procedia Computer Science, 120, 156–163. https://doi.org/10.1016/j.procs.2017.11.223
Akeju, A. V., Olusi, T. A., & Simon-Oke, I. A. (2022a). Effect of physicochemical parameters on Anopheles mosquitoes larval composition in Akure North Local Government area of Ondo State, Nigeria. The Journal of Basic and Applied Zoology, 83(1). https://doi.org/10.1186/s41936-022-00298-3
Akeju, A. V., Olusi, T. A., & Simon-Oke, I. A. (2022b). Effect of physicochemical parameters on Anopheles mosquitoes larval composition in Akure North Local Government area of Ondo State, Nigeria. The Journal of Basic and Applied Zoology, 83(1). https://doi.org/10.1186/s41936-022-00298-3
Carlson, J. C., Dyer, L. A., Omlin, F. X., & Beier, J. C. (2009). Diversity Cascades and malaria vectors. Journal of Medical Entomology, 46(3), 460–464. https://doi.org/10.1603/033.046.0307
Christiansen-Jucht, C., Parham, P. E., Saddler, A., Koella, J. C., & Basáñez, M. G. (2014). Temperature during larval development and adult maintenance influences the survival of Anopheles gambiae s.s. Parasites and Vectors, 7(1). https://doi.org/10.1186/s13071-014-0489-3
David, M. R., Dantas, E. S., Maciel-de-Freitas, R., Codeço, C. T., Prast, A. E., & Lourenço-de-Oliveira, R. (2021). Influence of Larval Habitat Environmental Characteristics on Culicidae Immature Abundance and Body Size of Adult Aedes aegypti. Frontiers in Ecology and Evolution, 9. https://doi.org/10.3389/fevo.2021.626757
de Almeida, N. C. V., Louzada, J., Neves, M. S. A. S., Carvalho, T. M., Castro-Alves, J., Silva-do-Nascimento, T. F., Escalante, A. A., & Oliveira-Ferreira, J. (2022). Larval habitats, species composition and distribution of malaria vectors in regions with autochthonous and imported malaria in Roraima state, Brazil. Malaria Journal, 21(1), 1–16. https://doi.org/10.1186/s12936-021-04033-1
Debrah, I., Afrane, Y. A., Amoah, L. E., Ochwedo, K. O., Mukabana, W. R., Zhong, D., Zhou, G., Lee, M. C., Onyango, S. A., Magomere, E. O., Atieli, H., Githeko, A. K., & Yan, G. (2021a). Larval ecology and bionomics of Anopheles funestus in highland and lowland sites in western Kenya. In PLoS ONE (Vol. 16, Issue 10 October). Public Library of Science. https://doi.org/10.1371/journal.pone.0255321
Debrah, I., Afrane, Y. A., Amoah, L. E., Ochwedo, K. O., Mukabana, W. R., Zhong, D., Zhou, G., Lee, M. C., Onyango, S. A., Magomere, E. O., Atieli, H., Githeko, A. K., & Yan, G. (2021b). Larval ecology and bionomics of Anopheles funestus in highland and lowland sites in western Kenya. PLoS ONE, 16(10 October), 1–20. https://doi.org/10.1371/journal.pone.0255321
Emidi, B., Kisinza, W. N., Mmbando, B. P., Malima, R., & Mosha, F. W. (2017). Effect of physicochemical parameters on Anopheles and Culex mosquito larvae abundance in different breeding sites in a rural setting of Muheza, Tanzania. Parasites and Vectors, 10(1), 1–13. https://doi.org/10.1186/s13071-017-2238-x
Fazeli-Dinan, M., Azarnoosh, M., Özgökçe, M. S., Chi, H., Hosseini-Vasoukolaei, N., Haghi, F. M., Zazouli, M. A., Nikookar, S. H., Dehbandi, R., Enayati, A., Zaim, M., & Hemingway, J. (2022). Global water quality changes posing threat of increasing infectious diseases, a case study on malaria vector Anopheles stephensi coping with the water pollutants using age-stage, two-sex life table method. Malaria Journal, 21(1). https://doi.org/10.1186/s12936-022-04201-x
Ferronato, N., & Torretta, V. (2019). Waste mismanagement in developing countries: A review of global issues. In International Journal of Environmental Research and Public Health (Vol. 16, Issue 6). MDPI AG. https://doi.org/10.3390/ijerph16061060
Getachew, D., Balkew, M., & Tekie, H. (2020a). Anopheles larval species composition and characterization of breeding habitats in two localities in the Ghibe River Basin, southwestern Ethiopia. Malaria Journal, 19(1), 1–13. https://doi.org/10.1186/s12936-020-3145-8
Getachew, D., Balkew, M., & Tekie, H. (2020b). Anopheles larval species composition and characterization of breeding habitats in two localities in the Ghibe River Basin, southwestern Ethiopia. Malaria Journal, 19(1). https://doi.org/10.1186/s12936-020-3145-8
Gillies, M. and M. C. (1987). A supplement to the Anophelinae of Africa South of the Sahara. South African Institute for Medical Research, 55. http://www.metoffice.gov.uk/public/weather/climate/u1214qgj0
Hessou-Djossou, D., Djègbè, I., Ahadji-Dabla, K. M., Nonfodji, O. M., Tchigossou, G., Djouaka, R., Cornelie, S., Djogbenou, L., Akogbeto, M., & Chandre, F. (2022). Diversity of larval habitats of Anopheles mosquitoes in urban areas of Benin and influence of their physicochemical and bacteriological characteristics on larval density. Parasites and Vectors, 15(1), 1–17. https://doi.org/10.1186/s13071-022-05323-6
Imbahale, S. S., Paaijmans, K. P., Mukabana, W. R., Van Lammeren, R., Githeko, A. K., & Takken, W. (2011). A longitudinal study on Anopheles mosquito larval abundance in distinct geographical and environmental settings in western Kenya. Malaria Journal, 10, 1–13. https://doi.org/10.1186/1475-2875-10-81
Kahamba, N. F., Finda, M., Ngowo, H. S., Msugupakulya, B. J., Baldini, F., Koekemoer, L. L., Ferguson, H. M., & Okumu, F. O. (2022). Using ecological observations to improve malaria control in areas where Anopheles funestus is the dominant vector. Malaria Journal, 21(1), 1–15. https://doi.org/10.1186/s12936-022-04198-3
Kamau, A., Mtanje, G., Mataza, C., Mwambingu, G., Mturi, N., Mohammed, S., Ong’ayo, G., Nyutu, G., Nyaguara, A., Bejon, P., & Snow, R. W. (2020). Malaria infection, disease and mortality among children and adults on the coast of Kenya. Malaria Journal, 19(1). https://doi.org/10.1186/s12936-020-03286-6
Keating, J., Macintyre, K., Mbogo, C. M., Githure, J. I., & Beier, J. C. (2004). Characterization of potential larval habitats for Anopheles mosquitoes in relation to urban land-use in Melindi, Kenya. International Journal of Health Geographics, 3, 1–13. https://doi.org/10.1186/1476-072X-3-9
Maina, D. M., Ndirangu, D. M., Mangala, M. M., Boman, J., Shepherd, K., & Gatari, M. J. (2016). Environmental implications of high metal content in soils of a titanium mining zone in Kenya. Environmental Science and Pollution Research, 23(21), 21431–21440. https://doi.org/10.1007/s11356-016-7249-1
Marrelli, M., Vatandoost, H., Ralph Medeiros De Sousa, A., Wang, H., Wang, Y., Cheng, P., Wang, H., Wang, H., Liu, H., Zhang, C., & Gong, M. (2021). The Larval Density of Mosquitos (Diptera: Culicidae) in Jiaxiang County, Shandong Province, China: Influence of Bacterial Diversity, Richness, and Physicochemical Factors. Front. Ecol. Evol, 9, 616769. https://doi.org/10.3389/fevo.2021.616769
Mbanzulu, K. M., Mboera, L. E. G., Wumba, R., Engbu, D., Bojabwa, M. M., Zanga, J., Mitashi, P. M., Misinzo, G., & Kimera, S. I. (2022). Physicochemical Characteristics of Aedes Mosquito Breeding Habitats in Suburban and Urban Areas of Kinshasa, Democratic Republic of the Congo. Frontiers in Tropical Diseases, 2(January), 1–9. https://doi.org/10.3389/fitd.2021.789273
McCord, G. C. (2016). Malaria ecology and climate change. European Physical Journal: Special Topics, 225(3), 459–470. https://doi.org/10.1140/epjst/e2015-50097-1
Mereta, S. T., Yewhalaw, D., Boets, P., Ahmed, A., Duchateau, L., Speybroeck, N., Vanwambeke, S. O., Legesse, W., De Meester, L., & Goethals, P. L. (2013). Physico-Chemical and biological characterization of anopheline mosquito larval habitats Diptera: Culicidae: Implications for malaria control. Parasites and Vectors, 6(1), 1–16. https://doi.org/10.1186/1756-3305-6-320
Meza, F. C., Muyaga, L. L., Limwagu, A. J., & Lwetoijera, D. W. (2022). The ability of Anopheles funestus and A. arabiensis to penetrate LLINs and its effect on their mortality. Wellcome Open Research, 7, 265. https://doi.org/10.12688/wellcomeopenres.18242.1
Mugenzi, L. M. J., Akosah-Brempong, G., Tchouakui, M., Menze, B. D., Tekoh, T. A., Tchoupo, M., Nkemngo, F. N., Wondji, M. J., Nwaefuna, E. K., Osae, M., & Wondji, C. S. (2022). Escalating pyrethroid resistance in two major malaria vectors Anopheles funestus and Anopheles gambiae (s.l.) in Atatam, Southern Ghana. BMC Infectious Diseases, 22(1). https://doi.org/10.1186/s12879-022-07795-4
Mwema, T., Lukubwe, O., Joseph, R., Maliti, D., Iitula, I., Katokele, S., Uusiku, P., Walusimbi, D., Ogoma, S. B., Tambo, M., Gueye, C. S., Williams, Y. A., Vajda, E., Tatarsky, A., Eiseb, S. J., Mumbengegwi, D. R., & Lobo, N. F. (2022). Human and vector behaviors determine exposure to Anopheles in Namibia. Parasites and Vectors, 15(1). https://doi.org/10.1186/s13071-022-05563-6
Mwingira, V., Mboera, L. E. G., Dicke, M., & Takken, W. (2020). Exploiting the chemical ecology of mosquito oviposition behavior in mosquito surveillance and control: a review. Journal of Vector Ecology, 45(2), 155–179. https://doi.org/10.1111/jvec.12387
Nambunga, I. H., Ngowo, H. S., Mapua, S. A., Hape, E. E., Msugupakulya, B. J., Msaky, D. S., Mhumbira, N. T., McHwembo, K. R., Tamayamali, G. Z., Mlembe, S. V., Njalambaha, R. M., Lwetoijera, D. W., Finda, M. F., Govella, N. J., Matoke-Muhia, D., Kaindoa, E. W., & Okumu, F. O. (2020). Aquatic habitats of the malaria vector Anopheles funestus in rural south-eastern Tanzania. Malaria Journal, 19(1), 1–11. https://doi.org/10.1186/s12936-020-03295-5
Nikookar, S. H., Fazeli-Dinan, M., Azari-Hamidian, S., Mousavinasab, S. N., Aarabi, M., Ziapour, P., Esfandyari, Y., & Enayati, A. (2017a). Correlation between mosquito larval density and their habitat physicochemical characteristics in Mazandaran Province, northern Iran. https://doi.org/10.1371/journal.pntd.0005835
Nikookar, S. H., Fazeli-Dinan, M., Azari-Hamidian, S., Mousavinasab, S. N., Aarabi, M., Ziapour, S. P., Esfandyari, Y., & Enayati, A. (2017b). Correlation between mosquito larval density and their habitat physicochemical characteristics in Mazandaran Province, northern Iran. PLoS Neglected Tropical Diseases, 11(8). https://doi.org/10.1371/journal.pntd.0005835
Njoroge, S., Muigai, A. W. T., Njiruh, P. N., & Kariuki, S. (2013). Molecular characterisation and antimicrobial resistance patterns of Escherichia coli isolates from goats slaughtered in parts of Kenya. East African Medical Journal, 90(3), 72–83.
Nyandwaro, E. O. (2017). The Impacts of Solid Waste on Ground and Surface Water Quality in Kisii Municipality, Kenya.
Omolade, O. O. (2018). Oviposition and Breeding Water Sites Preferences of Mosquitoes within Ojo area, Lagos State, Nigeria. Biomedical Journal of Scientific & Technical Research, 7(5), 6139–6145. https://doi.org/10.26717/bjstr.2018.07.001565
Ondiba, I. M., Oyieke, F. A., Athinya, D. K., Nyamongo, I. K., & Estambale, B. B. A. (2019). Larval species diversity, seasonal occurrence and larval habitat preference of mosquitoes transmitting Rift Valley fever and malaria in Baringo County, Kenya. Parasites and Vectors, 12(1), 1–14. https://doi.org/10.1186/s13071-019-3557-x
Oyewole, I. O., Momoh, O. O., Anyasor, G. N., Ogunnowo, A. A., Ibidapo, C. A., Oduola, O. A., Obansa, J. B., & Awolola, T. S. (2009). Physico-chemical characteristics of Anopheles breeding sites: Impact on fecundity and progeny development. In African Journal of Environmental Science and Technology (Vol. 3, Issue 12). http://www.academicjournals.org/AJEST
Schoelitsz, B., Mwingira, V., Mboera, L. E. G., Beijleveld, H., Koenraadt, C. J. M., Spitzen, J., van Loon, J. J. A., & Takken, W. (2020). Chemical Mediation of Oviposition by Anopheles Mosquitoes: a Push-Pull System Driven by Volatiles Associated with Larval Stages. Journal of Chemical Ecology, 46(4), 397–409. https://doi.org/10.1007/s10886-020-01175-5
Siddiqua, A., Hahladakis, J. N., & Al-Attiya, W. A. K. A. (2022). An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. In Environmental Science and Pollution Research (Vol. 29, Issue 39, pp. 58514–58536). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s11356-022-21578-z
Siwiendrayanti, A., Anggroro, S., & Nurjazuli. (2021). Characteristic differences between breeding places with and without Culex sp. larvae on lymphatic filariasis patient surroundings in an endemic area. IOP Conference Series: Earth and Environmental Science, 896(1). https://doi.org/10.1088/1755-1315/896/1/012079
Soleimani-Ahmadi, M., Vatandoost, H., & Zare, M. (2014). Characterization of larval habitats for anopheline mosquitoes in a malarious area under elimination program in the southeast of Iran. Asian Pacific Journal of Tropical Biomedicine, 4(Suppl 1), S73–S80. https://doi.org/10.12980/APJTB.4.2014C899
Subba Rao, N. (2008). Factors controlling the salinity in groundwater in parts of Guntur district, Andhra Pradesh, India. Environmental Monitoring and Assessment, 138(1–3), 327–341. https://doi.org/10.1007/S10661-007-9801-4
Tang, L., Pan, X., Feng, J., Pu, X., Liang, R., Li, R., & Li, K. (2019). Experimental investigation on the relationship between COD degradation and hydrodynamic conditions in urban rivers. International Journal of Environmental Research and Public Health, 16(18). https://doi.org/10.3390/ijerph16183447
Tchigossou, G., Akoton, R., Yessoufou, A., Djegbe, I., Zeukeng, F., Atoyebi, S. M., Tossou, E., Moutairou, K., & Djouaka, R. (2017). Water source most suitable for rearing a sensitive malaria vector, Anopheles funestus in the laboratory [version 1; referees: 2 approved]. Wellcome Open Research, 2(0), 1–16. https://doi.org/10.12688/wellcomeopenres.12942.1
Yokoly, F. N., Zahouli, J. B. Z., Small, G., Ouattara, A. F., Opoku, M., de Souza, D. K., & Koudou, B. G. (2021). Assessing Anopheles vector species diversity and transmission of malaria in four health districts along the borders of Côte d’Ivoire. Malaria Journal, 20(1). https://doi.org/10.1186/s12936-021-03938-1
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Clifton Omondi, Dr. James Nonoh, Dr. Regina Ntabo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright in their articles.
Articles in the European Journal of Ecology published 2020 and after are made available under a Creative Commons Attribution 4.0 license.
Articles in the European Journal of Ecology published 2015-2019 are made available under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 license.