Genetic diversity of European tree frogs (Hyla arborea group): A systematic review
DOI:
https://doi.org/10.17161/eurojecol.v10i1.21266Keywords:
Hyla arborea group, genetic diversity, amphibians, phylogeography, conservation, biodiversityAbstract
Amphibian populations are increasingly threatened by global change and the study of their genetic diversity is a major conservation priority. Western palearctic tree frog species of the Hyla arborea group are commonly distributed across Europe and the Middle East and many have declining populations. We performed a PRISMA systematic review to gain insight into the genetic diversity of H. arborea group. Sixteen published studies were included in the final qualitative analysis. While the genetic diversity of H. arborea group species was widely variable, it could often be explained by phylogeographic history. Populations in Western and Northern Europe had lower genetic diversity, with some populations also affected by habitat fragmentation. However, important regions of high genetic diversity were found in the Balkan peninsula for H. arborea sensu stricto and around the Black Sea for H. orientalis. Genetic diversity of H. molleri, H. savignyi, H. meridionalis, H. felixarabica, H. intermedia, H. sarda has been investigated only across extensive phylogeographical studies, while data regarding their genetic diversity at the local level are missing. Through our review, we identify knowledge gaps about the genetic diversity of the H. arborea group that require further investigation, of and illustrate how filling these gaps might translate into future conservation efforts.References
Allentoft, M., & O’Brien, J. (2010). Global Amphibian Declines, Loss of Genetic Diversity and Fitness: A Review. Diversity, 2(1), 47–71. https://doi.org/10.3390/d2010047
Alves-Ferreira, G., Talora, D. C., Solé, M., Cervantes-López, M. J., & Heming, N. M. (2022). Unraveling global impacts of climate change on amphibians distributions: A life-history and biogeographic-based approach. Frontiers in Ecology and Evolution, 10, 987237. https://doi.org/10.3389/fevo.2022.987237
Andersen, L. W., Fog, K., & Damgaard, C. (2004). Habitat fragmentation causes bottlenecks and inbreeding in the European tree frog ( Hyla arborea ). Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(1545), 1293–1302. https://doi.org/10.1098/rspb.2004.2720
Arens, P., Bugter, R., Westende, W. van’t, Zollinger, R., Stronks, J., Vos, C. C., & Smulders, M. J. M. (2006). Microsatellite variation and population structure of a recovering Tree frog (Hyla arborea L.) metapopulation. Conservation Genetics, 7(6), 825–835. https://doi.org/10.1007/s10592-005-9112-7
Auffarth, J., Krug, A., Pröhl, H., & Jehle, R. (2017). A genetically-informed Population Viability Analysis reveals conservation priorities for an isolated population of Hyla arborea. SALAMANDRA, 53(2), 171–182.
Beebee, T. J. C., & Griffiths, R. A. (2005). The amphibian decline crisis: A watershed for conservation biology? Biological Conservation, 125(3), 271–285. https://doi.org/10.1016/j.biocon.2005.04.009
Beebee, T. J. C., & Rowe, G. (2004). An introduction to molecular ecology. Oxford University Press.
Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N., & Bohomme, F. (2004). Genetix 4.05, logiciel sous WindowsTM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France).
Berset-Brändli, L., Jaquiéry, J., Broquet, T., & Perrin, N. (2008). Isolation and characterization of microsatellite loci for the European tree frog ( Hyla arborea ). Molecular Ecology Resources, 8(5), 1095–1097. https://doi.org/10.1111/j.1755-0998.2008.02189.x
Birbele, E., Gulbe, E., Šķērstiņa, R., Puchades, L., Deksne, G., Di Marzio, A. (in press) Palearctic Treefrog (Hyla orientalis) in Latvia: census and genetic analysis after 30 Years of its reintroduction: Latvian Tree Frog. Herpetology Notes.
Broquet, T., Angelone, S., Jaquiery, J., Joly, P., Lena, J.-P., Lengagne, T., Plenet, S., Luquet, E., & Perrin, N. (2010). Genetic Bottlenecks Driven by Population Disconnection: Population Disconnection and Genetic Bottlenecks. Conservation Biology, 24(6), 1596–1605. https://doi.org/10.1111/j.1523-1739.2010.01556.x
Burraco, P., Car, C., Bonzom, J.-M., & Orizaola, G. (2021). Assessment of exposure to ionizing radiation in Chernobyl tree frogs (Hyla orientalis). Scientific Reports, 11(1), 20509. https://doi.org/10.1038/s41598-021-00125-9
Camacho‐Sanchez, M., Velo‐Antón, G., Hanson, J. O., Veríssimo, A., Martínez‐Solano, Í., Marques, A., Moritz, C., & Carvalho, S. B. (2020). Comparative assessment of range‐wide patterns of genetic diversity and structure with SNPs and microsatellites: A case study with Iberian amphibians. Ecology and Evolution, 10(19), 10353–10363. https://doi.org/10.1002/ece3.6670
Car, C., Gilles, A., Armant, O., Burraco, P., Beaugelin‐Seiller, K., Gashchak, S., Camilleri, V., Cavalié, I., Laloi, P., Adam‐Guillermin, C., Orizaola, G., & Bonzom, J. (2022). Unusual evolution of tree frog populations in the Chernobyl exclusion zone. Evolutionary Applications, 15(2), 203–219. https://doi.org/10.1111/eva.13282
Ceballos, G., Ehrlich, P. R., & Raven, P. H. (2020). Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proceedings of the National Academy of Sciences, 117(24), 13596–13602. https://doi.org/10.1073/pnas.1922686117
Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: A computer program to estimate gene genealogies. Molecular Ecology, 9(10), 1657–1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x
Cornuet, J. M., & Luikart, G. (1996). Description and Power Analysis of Two Tests for Detecting Recent Population Bottlenecks From Allele Frequency Data. Genetics, 144(4), 2001–2014. https://doi.org/10.1093/genetics/144.4.2001
DeWoody, J. A., Harder, A. M., Mathur, S., & Willoughby, J. R. (2021). The long‐standing significance of genetic diversity in conservation. Molecular Ecology, 30(17), 4147–4154. https://doi.org/10.1111/mec.16051
Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7(1), 214. https://doi.org/10.1186/1471-2148-7-214
Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29(8), 1969–1973. https://doi.org/10.1093/molbev/mss075
Dubey, S., Ursenbacher, S., Pellet, J., & Fumagalli, L. (2009). Genetic differentiation in two European tree frog (Hyla arborea) metapopulations in contrasted landscapes of western Switzerland. Amphibia-Reptilia, 30(1), 127–133. https://doi.org/10.1163/156853809787392775
Dufresnes, C., Beddek, M., Skorinov, D. V., Fumagalli, L., Perrin, N., Crochet, P.-A., & Litvinchuk, S. N. (2019). Diversification and speciation in tree frogs from the Maghreb (Hyla meridionalis sensu lato), with description of a new African endemic. Molecular Phylogenetics and Evolution, 134, 291–299. https://doi.org/10.1016/j.ympev.2019.02.009
Dufresnes, C., Berroneau, M., Dubey, S., Litvinchuk, S. N., & Perrin, N. (2020). The effect of phylogeographic history on species boundaries: A comparative framework in Hyla tree frogs. Scientific Reports, 10(1), 5502. https://doi.org/10.1038/s41598-020-62382-4
Dufresnes, C., Litvinchuk, S. N., Leuenberger, J., Ghali, K., Zinenko, O., Stöck, M., & Perrin, N. (2016). Evolutionary melting pots: A biodiversity hotspot shaped by ring diversifications around the Black Sea in the Eastern tree frog ( Hyla orientalis ). Molecular Ecology, 25(17), 4285–4300. https://doi.org/10.1111/mec.13706
Dufresnes, C., Mazepa, G., Rodrigues, N., Brelsford, A., Litvinchuk, S. N., Sermier, R., Lavanchy, G., Betto-Colliard, C., Blaser, O., Borzée, A., Cavoto, E., Fabre, G., Ghali, K., Grossen, C., Horn, A., Leuenberger, J., Phillips, B. C., Saunders, P. A., Savary, R., … Jeffries, D. L. (2018). Genomic Evidence for Cryptic Speciation in Tree Frogs From the Apennine Peninsula, With Description of Hyla perrini sp. Nov. Frontiers in Ecology and Evolution, 6, 144. https://doi.org/10.3389/fevo.2018.00144
Dufresnes, C., Wassef, J., Ghali, K., Brelsford, A., Stöck, M., Lymberakis, P., Crnobrnja-Isailovic, J., & Perrin, N. (2013). Conservation phylogeography: Does historical diversity contribute to regional vulnerability in European tree frogs ( Hyla arborea )? Molecular Ecology, 22(22), 5669–5684. https://doi.org/10.1111/mec.12513
Earl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359–361. https://doi.org/10.1007/s12686-011-9548-7
Enriquez-Urzelai, U., Bernardo, N., Moreno-Rueda, G., Montori, A., & Llorente, G. (2019). Are amphibians tracking their climatic niches in response to climate warming? A test with Iberian amphibians. Climatic Change, 154(1–2), 289–301. https://doi.org/10.1007/s10584-019-02422-9
Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evolutionary Bioinformatics, 1, 117693430500100. https://doi.org/10.1177/117693430500100003
Forsman, A., & Wennersten, L. (2016). Inter-individual variation promotes ecological success of populations and species: Evidence from experimental and comparative studies. Ecography, 39(7), 630–648. https://doi.org/10.1111/ecog.01357
Frankham, R. (2005). Genetics and extinction. Biological Conservation, 126(2), 131–140. https://doi.org/10.1016/j.biocon.2005.05.002
Frankham, R., Ballou, J. D., & Briscoe, D. A. (2010). Introduction to Conservation Genetics (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511809002
Freeland, J. (2020). Molecular ecology (Third edition). Wiley Blackwell.
Gaitán‐Espitia, J. D., & Hobday, A. J. (2021). Evolutionary principles and genetic considerations for guiding conservation interventions under climate change. Global Change Biology, 27(3), 475–488. https://doi.org/10.1111/gcb.15359
Garza, J. C., & Williamson, E. G. (2001). Detection of reduction in population size using data from microsatellite loci. Molecular Ecology, 10(2), 305–318. https://doi.org/10.1046/j.1365-294x.2001.01190.x
Gerlach, G., Jueterbock, A., Kraemer, P., Deppermann, J., & Harmand, P. (2010). Calculations of population differentiation based on GST and D: Forget GST but not all of statistics!: NEWS AND VIEWS: COMMENT. Molecular Ecology, 19(18), 3845–3852. https://doi.org/10.1111/j.1365-294X.2010.04784.x
Goudet, J. (1995). FSTAT (Version 1.2): A Computer Program to Calculate F-Statistics. Journal of Heredity, 86(6), 485–486. https://doi.org/10.1093/oxfordjournals.jhered.a111627
Goudet, J. (1999). PCAGEN. Principal Component Analysis of Gene Frequency Data (1.2) [Computer software]. http://www2.unil.ch/popgen/softwares/pcagen.htm
Goudet, J. (2001). FSTAT, a program to estimate and test gene diversities and fixation indices (ver. 293) [Computer software]. http://www.unil.ch/izea/softwares/fstat.html
Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology, 59(3), 307–321. https://doi.org/10.1093/sysbio/syq010
Guindon, S., & Gascuel, O. (2003). A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood. Systematic Biology, 52(5), 696–704. https://doi.org/10.1080/10635150390235520
Gvoždík, V., Canestrelli, D., García-París, M., Moravec, J., Nascetti, G., Recuero, E., Teixeira, J., & Kotlík, P. (2015). Speciation history and widespread introgression in the European short-call tree frogs (Hyla arborea sensu lato, H. intermedia and H. sarda). Molecular Phylogenetics and Evolution, 83, 143–155. https://doi.org/10.1016/j.ympev.2014.11.012
Gvoždík, V., Moravec, J., Klütsch, C., & Kotlík, P. (2010). Phylogeography of the Middle Eastern tree frogs (Hyla, Hylidae, Amphibia) as inferred from nuclear and mitochondrial DNA variation, with a description of a new species. Molecular Phylogenetics and Evolution, 55(3), 1146–1166. https://doi.org/10.1016/j.ympev.2010.03.015
Hamer, A. J., & McDonnell, M. J. (2008). Amphibian ecology and conservation in the urbanising world: A review. Biological Conservation, 141(10), 2432–2449. https://doi.org/10.1016/j.biocon.2008.07.020
Heled, J., & Drummond, A. J. (2010). Bayesian Inference of Species Trees from Multilocus Data. Molecular Biology and Evolution, 27(3), 570–580. https://doi.org/10.1093/molbev/msp274
Hoban, S., Campbell, C. D., da Silva, J. M., Ekblom, R., Funk, W. C., Garner, B. A., Godoy, J. A., Kershaw, F., MacDonald, A. J., Mergeay, J., Minter, M., O’Brien, D., Vinas, I. P., Pearson, S. K., Pérez-Espona, S., Potter, K. M., Russo, I.-R. M., Segelbacher, G., Vernesi, C., & Hunter, M. E. (2021). Genetic diversity is considered important but interpreted narrowly in country reports to the Convention on Biological Diversity: Current actions and indicators are insufficient. Biological Conservation, 261, 109233. https://doi.org/10.1016/j.biocon.2021.109233
Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17(8), 754–755. https://doi.org/10.1093/bioinformatics/17.8.754
IUCN. (2022). The IUCN Red List of Threatened Species. IUCN Red List of Threatened Species. https://www.iucnredlist.org/en
Jehle, R., & Arntzen, J. W. (2002). Microsatellite markers in amphibian conservation genetics. Herpetological Journal, 12, 1–9.
Kyriakopoulou-Sklavounou, P., Karakousis, Y., & Alexiou, B. (1992). A morphometric and electrophoretic study of two populations of Hyla arborea L. in Greece. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 103(3), 715–719. https://doi.org/10.1016/0305-0491(92)90395-8
Laikre, L. (2010). Genetic diversity is overlooked in international conservation policy implementation. Conservation Genetics, 11(2), 349–354. https://doi.org/10.1007/s10592-009-0037-4
Laikre, L., Allendorf, F. W., Aroner, L. C., Baker, C. S., Gregovich, D. P., Hansen, M. M., Jackson, J. A., Kendall, K. C., McKELVEY, K., Neel, M. C., Olivieri, I., Ryman, N., Schwartz, M. K., Bull, R. S., Stetz, J. B., Tallmon, D. A., Taylor, B. L., Vojta, C. D., Waller, D. M., & Waples, R. S. (2010). Neglect of Genetic Diversity in Implementation of the Convention on Biological Diversity. Conservation Biology, 24(1), 86–88. https://doi.org/10.1111/j.1523-1739.2009.01425.x
Lanfear, R., Calcott, B., Ho, S. Y. W., & Guindon, S. (2012). PartitionFinder: Combined Selection of Partitioning Schemes and Substitution Models for Phylogenetic Analyses. Molecular Biology and Evolution, 29(6), 1695–1701. https://doi.org/10.1093/molbev/mss020
Luquet, E., David, P., Lena, J.-P., Joly, P., Konecny, L., Dufresnes, C., Perrin, N., & Plenet, S. (2011). Heterozygosity-fitness correlations among wild populations of European tree frog (Hyla arborea) detect fixation load: HFC AMONG POPULATIONS DETECT FIXATION LOAD. Molecular Ecology, 20(9), 1877–1887. https://doi.org/10.1111/j.1365-294X.2011.05061.x
Microsoft Corporation. (2022). Microsoft Excel [Computer software]. Microsoft Corporation. https://office.microsoft.com/excel
Nylander, J. A. A. (2004). MRAIC, Ver. 1.44. https://doi.org/Program distributed by the author
Oswald, P., Taddey, K., Auffarth, J., Brandt, T., & Pröhl, H. (2017). Conservation genetics of a mirrored population of the European tree frog (Hyla arborea). SALAMANDRA, 53(3), 368–378.
Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … McKenzie, J. E. (2021). PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ, n160. https://doi.org/10.1136/bmj.n160
Paz‐Vinas, I., Jensen, E. L., Bertola, L. D., Breed, M. F., Hand, B. K., Hunter, M. E., Kershaw, F., Leigh, D. M., Luikart, G., Mergeay, J., Miller, J. M., Van Rees, C. B., Segelbacher, G., & Hoban, S. (2021). Macrogenetic studies must not ignore limitations of genetic markers and scale. Ecology Letters, 24(6), 1282–1284. https://doi.org/10.1111/ele.13732
Peakall, R., & Smouse, P. E. (2006). genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6(1), 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
Phillips, S. (2020). The importance of long-term genetic monitoring of reintroduced populations: Inbreeding in the natterjack toad (Epidalea calamita). Herpetological Journal, Volume 30, Number 3, 159–167. https://doi.org/10.33256/hj30.3.159167
Pidancier, N., Miquel, C., & Miaud, C. (2003). Buccal swabs as a non-destructive tissue sampling method for DNA analysis in amphibians. Herpetological Journal, 13, 175–178.
Pierce, A. A., Gutierrez, R., Rice, A. M., & Pfennig, K. S. (2017). Genetic variation during range expansion: Effects of habitat novelty and hybridization. Proceedings of the Royal Society B: Biological Sciences, 284(1852), 20170007. https://doi.org/10.1098/rspb.2017.0007
Posada, D. (2008). jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution, 25(7), 1253–1256. https://doi.org/10.1093/molbev/msn083
Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of Population Structure Using Multilocus Genotype Data. Genetics, 155(2), 945–959. https://doi.org/10.1093/genetics/155.2.945
R Development Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing [Computer software].
Raymond, M., & Rousset, F. (1995). GENEPOP (ver. 1.2): Population genetics software for exact tests and ecumenicism. Journal of Heredity, 86, 248–249.
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology, 61(3), 539–542. https://doi.org/10.1093/sysbio/sys029
Schiebelhut, L. M., Abboud, S. S., Gómez Daglio, L. E., Swift, H. F., & Dawson, M. N. (2017). A comparison of DNA extraction methods for high‐throughput DNA analyses. Molecular Ecology Resources, 17(4), 721–729. https://doi.org/10.1111/1755-0998.12620
Schneider, S., Roessli, D., & Excoffier, L. (2000). Arlequin ver. 2.000. A software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland.
Segelbacher, G., Bosse, M., Burger, P., Galbusera, P., Godoy, J. A., Helsen, P., Hvilsom, C., Iacolina, L., Kahric, A., Manfrin, C., Nonic, M., Thizy, D., Tsvetkov, I., Veličković, N., Vilà, C., Wisely, S. M., & Buzan, E. (2022). New developments in the field of genomic technologies and their relevance to conservation management. Conservation Genetics, 23(2), 217–242. https://doi.org/10.1007/s10592-021-01415-5
Skerratt, L. F., Berger, L., Speare, R., Cashins, S., McDonald, K. R., Phillott, A. D., Hines, H. B., & Kenyon, N. (2007). Spread of Chytridiomycosis Has Caused the Rapid Global Decline and Extinction of Frogs. EcoHealth, 4(2), 125. https://doi.org/10.1007/s10393-007-0093-5
Speybroeck, J., Beukema, W., Dufresnes, C., Fritz, U., Jablonski, D., Lymberakis, P., Martínez-Solano, I., Razzetti, E., Vamberger, M., Vences, M., Vörös, J., & Crochet, P.-A. (2020). Species list of the European herpetofauna – 2020 update by the Taxonomic Committee of the Societas Europaea Herpetologica. Amphibia-Reptilia, 41(2), 139–189. https://doi.org/10.1163/15685381-bja10010
Stelkens, R. B., Brockhurst, M. A., Hurst, G. D. D., & Greig, D. (2014). Hybridization facilitates evolutionary rescue. Evolutionary Applications, 7(10), 1209–1217. https://doi.org/10.1111/eva.12214
Stöck, M., Dufresnes, C., Litvinchuk, S. N., Lymberakis, P., Biollay, S., Berroneau, M., Borzée, A., Ghali, K., Ogielska, M., & Perrin, N. (2012). Cryptic diversity among Western Palearctic tree frogs: Postglacial range expansion, range limits, and secondary contacts of three European tree frog lineages (Hyla arborea group). Molecular Phylogenetics and Evolution, 65(1), 1–9. https://doi.org/10.1016/j.ympev.2012.05.014
Swofford, D. L., & Selander, R. B. (1989). BIOSYS-1: A computer program for the analysis of allelic variation in population genetics and biochemical systematics, release 1.7. Illinois Natural History Survey, Champaign.
Swofford, D. L., & Sullivan, J. (2003). Phylogeny inference based on parsimony and other methods using PAUP*. In The Phylogenetic Handbook: A Practical Approach to DNA and Protein Phylogeny (pp. 160–206).
Szpiech, Z. A., Jakobsson, M., & Rosenberg, N. A. (2008). ADZE: A rarefaction approach for counting alleles private to combinations of populations. Bioinformatics, 24(21), 2498–2504.
Teixeira, J. C., & Huber, C. D. (2021). The inflated significance of neutral genetic diversity in conservation genetics. Proceedings of the National Academy of Sciences, 118(10), e2015096118. https://doi.org/10.1073/pnas.2015096118
Verardi, A., Canestrelli, D., & Nascetti, G. (2009). Nuclear and Mitochondrial Patterns of Introgression between the Parapatric European Treefrogs Hyla arborea and H. intermedia. Annales Zoologici Fennici, 46(4), 247–258. https://doi.org/10.5735/086.046.0402
Weir, B. S., & Cockerham, C. C. (1984). Estimating F-Statistics for the Analysis of Population Structure. Evolution, 38(6), 1358. https://doi.org/10.2307/2408641
Yang, Z. (2013). BP&P, v.2.2. Manual Distributed with the Software. http:// abacus.gene.ucl.ac.uk/software.html
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Elza Birbele, Alessandro Di Marzio, Dace Grauda, Giovanni Vimercati, Gunita Deksne
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright in their articles.
Articles in the European Journal of Ecology published 2020 and after are made available under a Creative Commons Attribution 4.0 license.
Articles in the European Journal of Ecology published 2015-2019 are made available under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 license.