Genetic diversity of European tree frogs (Hyla arborea group): A systematic review

Authors

DOI:

https://doi.org/10.17161/eurojecol.v10i1.21266

Keywords:

Hyla arborea group, genetic diversity, amphibians, phylogeography, conservation, biodiversity

Abstract

Amphibian populations are increasingly threatened by global change and the study of their genetic diversity is a major conservation priority. Western palearctic tree frog species of the Hyla arborea group are commonly distributed across Europe and the Middle East and many have declining populations. We performed a PRISMA systematic review to gain insight into the genetic diversity of H. arborea group. Sixteen published studies were included in the final qualitative analysis. While the genetic diversity of H. arborea group species was widely variable, it could often be explained by phylogeographic history. Populations in Western and Northern Europe had lower genetic diversity, with some populations also affected by habitat fragmentation. However, important regions of high genetic diversity were found in the Balkan peninsula for H. arborea sensu stricto and around the Black Sea for H. orientalis. Genetic diversity of H. molleri, H. savignyi, H. meridionalis, H. felixarabica, H. intermedia, H. sarda has been investigated only across extensive phylogeographical studies, while data regarding their genetic diversity at the local level are missing. Through our review, we identify knowledge gaps about the genetic diversity of the H. arborea group that require further investigation, of and illustrate how filling these gaps might translate into future conservation efforts.

Author Biographies

  • Dace Grauda, University of Latvia

    Institute of Biology

  • Giovanni Vimercati, University of Fribourg

    Department of Biology

References

Allentoft, M., & O’Brien, J. (2010). Global Amphibian Declines, Loss of Genetic Diversity and Fitness: A Review. Diversity, 2(1), 47–71. https://doi.org/10.3390/d2010047

Alves-Ferreira, G., Talora, D. C., Solé, M., Cervantes-López, M. J., & Heming, N. M. (2022). Unraveling global impacts of climate change on amphibians distributions: A life-history and biogeographic-based approach. Frontiers in Ecology and Evolution, 10, 987237. https://doi.org/10.3389/fevo.2022.987237

Andersen, L. W., Fog, K., & Damgaard, C. (2004). Habitat fragmentation causes bottlenecks and inbreeding in the European tree frog ( Hyla arborea ). Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(1545), 1293–1302. https://doi.org/10.1098/rspb.2004.2720

Arens, P., Bugter, R., Westende, W. van’t, Zollinger, R., Stronks, J., Vos, C. C., & Smulders, M. J. M. (2006). Microsatellite variation and population structure of a recovering Tree frog (Hyla arborea L.) metapopulation. Conservation Genetics, 7(6), 825–835. https://doi.org/10.1007/s10592-005-9112-7

Auffarth, J., Krug, A., Pröhl, H., & Jehle, R. (2017). A genetically-informed Population Viability Analysis reveals conservation priorities for an isolated population of Hyla arborea. SALAMANDRA, 53(2), 171–182.

Beebee, T. J. C., & Griffiths, R. A. (2005). The amphibian decline crisis: A watershed for conservation biology? Biological Conservation, 125(3), 271–285. https://doi.org/10.1016/j.biocon.2005.04.009

Beebee, T. J. C., & Rowe, G. (2004). An introduction to molecular ecology. Oxford University Press.

Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N., & Bohomme, F. (2004). Genetix 4.05, logiciel sous WindowsTM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France).

Berset-Brändli, L., Jaquiéry, J., Broquet, T., & Perrin, N. (2008). Isolation and characterization of microsatellite loci for the European tree frog ( Hyla arborea ). Molecular Ecology Resources, 8(5), 1095–1097. https://doi.org/10.1111/j.1755-0998.2008.02189.x

Birbele, E., Gulbe, E., Šķērstiņa, R., Puchades, L., Deksne, G., Di Marzio, A. (in press) Palearctic Treefrog (Hyla orientalis) in Latvia: census and genetic analysis after 30 Years of its reintroduction: Latvian Tree Frog. Herpetology Notes.

Broquet, T., Angelone, S., Jaquiery, J., Joly, P., Lena, J.-P., Lengagne, T., Plenet, S., Luquet, E., & Perrin, N. (2010). Genetic Bottlenecks Driven by Population Disconnection: Population Disconnection and Genetic Bottlenecks. Conservation Biology, 24(6), 1596–1605. https://doi.org/10.1111/j.1523-1739.2010.01556.x

Burraco, P., Car, C., Bonzom, J.-M., & Orizaola, G. (2021). Assessment of exposure to ionizing radiation in Chernobyl tree frogs (Hyla orientalis). Scientific Reports, 11(1), 20509. https://doi.org/10.1038/s41598-021-00125-9

Camacho‐Sanchez, M., Velo‐Antón, G., Hanson, J. O., Veríssimo, A., Martínez‐Solano, Í., Marques, A., Moritz, C., & Carvalho, S. B. (2020). Comparative assessment of range‐wide patterns of genetic diversity and structure with SNPs and microsatellites: A case study with Iberian amphibians. Ecology and Evolution, 10(19), 10353–10363. https://doi.org/10.1002/ece3.6670

Car, C., Gilles, A., Armant, O., Burraco, P., Beaugelin‐Seiller, K., Gashchak, S., Camilleri, V., Cavalié, I., Laloi, P., Adam‐Guillermin, C., Orizaola, G., & Bonzom, J. (2022). Unusual evolution of tree frog populations in the Chernobyl exclusion zone. Evolutionary Applications, 15(2), 203–219. https://doi.org/10.1111/eva.13282

Ceballos, G., Ehrlich, P. R., & Raven, P. H. (2020). Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proceedings of the National Academy of Sciences, 117(24), 13596–13602. https://doi.org/10.1073/pnas.1922686117

Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: A computer program to estimate gene genealogies. Molecular Ecology, 9(10), 1657–1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x

Cornuet, J. M., & Luikart, G. (1996). Description and Power Analysis of Two Tests for Detecting Recent Population Bottlenecks From Allele Frequency Data. Genetics, 144(4), 2001–2014. https://doi.org/10.1093/genetics/144.4.2001

DeWoody, J. A., Harder, A. M., Mathur, S., & Willoughby, J. R. (2021). The long‐standing significance of genetic diversity in conservation. Molecular Ecology, 30(17), 4147–4154. https://doi.org/10.1111/mec.16051

Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7(1), 214. https://doi.org/10.1186/1471-2148-7-214

Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29(8), 1969–1973. https://doi.org/10.1093/molbev/mss075

Dubey, S., Ursenbacher, S., Pellet, J., & Fumagalli, L. (2009). Genetic differentiation in two European tree frog (Hyla arborea) metapopulations in contrasted landscapes of western Switzerland. Amphibia-Reptilia, 30(1), 127–133. https://doi.org/10.1163/156853809787392775

Dufresnes, C., Beddek, M., Skorinov, D. V., Fumagalli, L., Perrin, N., Crochet, P.-A., & Litvinchuk, S. N. (2019). Diversification and speciation in tree frogs from the Maghreb (Hyla meridionalis sensu lato), with description of a new African endemic. Molecular Phylogenetics and Evolution, 134, 291–299. https://doi.org/10.1016/j.ympev.2019.02.009

Dufresnes, C., Berroneau, M., Dubey, S., Litvinchuk, S. N., & Perrin, N. (2020). The effect of phylogeographic history on species boundaries: A comparative framework in Hyla tree frogs. Scientific Reports, 10(1), 5502. https://doi.org/10.1038/s41598-020-62382-4

Dufresnes, C., Litvinchuk, S. N., Leuenberger, J., Ghali, K., Zinenko, O., Stöck, M., & Perrin, N. (2016). Evolutionary melting pots: A biodiversity hotspot shaped by ring diversifications around the Black Sea in the Eastern tree frog ( Hyla orientalis ). Molecular Ecology, 25(17), 4285–4300. https://doi.org/10.1111/mec.13706

Dufresnes, C., Mazepa, G., Rodrigues, N., Brelsford, A., Litvinchuk, S. N., Sermier, R., Lavanchy, G., Betto-Colliard, C., Blaser, O., Borzée, A., Cavoto, E., Fabre, G., Ghali, K., Grossen, C., Horn, A., Leuenberger, J., Phillips, B. C., Saunders, P. A., Savary, R., … Jeffries, D. L. (2018). Genomic Evidence for Cryptic Speciation in Tree Frogs From the Apennine Peninsula, With Description of Hyla perrini sp. Nov. Frontiers in Ecology and Evolution, 6, 144. https://doi.org/10.3389/fevo.2018.00144

Dufresnes, C., Wassef, J., Ghali, K., Brelsford, A., Stöck, M., Lymberakis, P., Crnobrnja-Isailovic, J., & Perrin, N. (2013). Conservation phylogeography: Does historical diversity contribute to regional vulnerability in European tree frogs ( Hyla arborea )? Molecular Ecology, 22(22), 5669–5684. https://doi.org/10.1111/mec.12513

Earl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359–361. https://doi.org/10.1007/s12686-011-9548-7

Enriquez-Urzelai, U., Bernardo, N., Moreno-Rueda, G., Montori, A., & Llorente, G. (2019). Are amphibians tracking their climatic niches in response to climate warming? A test with Iberian amphibians. Climatic Change, 154(1–2), 289–301. https://doi.org/10.1007/s10584-019-02422-9

Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evolutionary Bioinformatics, 1, 117693430500100. https://doi.org/10.1177/117693430500100003

Forsman, A., & Wennersten, L. (2016). Inter-individual variation promotes ecological success of populations and species: Evidence from experimental and comparative studies. Ecography, 39(7), 630–648. https://doi.org/10.1111/ecog.01357

Frankham, R. (2005). Genetics and extinction. Biological Conservation, 126(2), 131–140. https://doi.org/10.1016/j.biocon.2005.05.002

Frankham, R., Ballou, J. D., & Briscoe, D. A. (2010). Introduction to Conservation Genetics (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511809002

Freeland, J. (2020). Molecular ecology (Third edition). Wiley Blackwell.

Gaitán‐Espitia, J. D., & Hobday, A. J. (2021). Evolutionary principles and genetic considerations for guiding conservation interventions under climate change. Global Change Biology, 27(3), 475–488. https://doi.org/10.1111/gcb.15359

Garza, J. C., & Williamson, E. G. (2001). Detection of reduction in population size using data from microsatellite loci. Molecular Ecology, 10(2), 305–318. https://doi.org/10.1046/j.1365-294x.2001.01190.x

Gerlach, G., Jueterbock, A., Kraemer, P., Deppermann, J., & Harmand, P. (2010). Calculations of population differentiation based on GST and D: Forget GST but not all of statistics!: NEWS AND VIEWS: COMMENT. Molecular Ecology, 19(18), 3845–3852. https://doi.org/10.1111/j.1365-294X.2010.04784.x

Goudet, J. (1995). FSTAT (Version 1.2): A Computer Program to Calculate F-Statistics. Journal of Heredity, 86(6), 485–486. https://doi.org/10.1093/oxfordjournals.jhered.a111627

Goudet, J. (1999). PCAGEN. Principal Component Analysis of Gene Frequency Data (1.2) [Computer software]. http://www2.unil.ch/popgen/softwares/pcagen.htm

Goudet, J. (2001). FSTAT, a program to estimate and test gene diversities and fixation indices (ver. 293) [Computer software]. http://www.unil.ch/izea/softwares/fstat.html

Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology, 59(3), 307–321. https://doi.org/10.1093/sysbio/syq010

Guindon, S., & Gascuel, O. (2003). A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood. Systematic Biology, 52(5), 696–704. https://doi.org/10.1080/10635150390235520

Gvoždík, V., Canestrelli, D., García-París, M., Moravec, J., Nascetti, G., Recuero, E., Teixeira, J., & Kotlík, P. (2015). Speciation history and widespread introgression in the European short-call tree frogs (Hyla arborea sensu lato, H. intermedia and H. sarda). Molecular Phylogenetics and Evolution, 83, 143–155. https://doi.org/10.1016/j.ympev.2014.11.012

Gvoždík, V., Moravec, J., Klütsch, C., & Kotlík, P. (2010). Phylogeography of the Middle Eastern tree frogs (Hyla, Hylidae, Amphibia) as inferred from nuclear and mitochondrial DNA variation, with a description of a new species. Molecular Phylogenetics and Evolution, 55(3), 1146–1166. https://doi.org/10.1016/j.ympev.2010.03.015

Hamer, A. J., & McDonnell, M. J. (2008). Amphibian ecology and conservation in the urbanising world: A review. Biological Conservation, 141(10), 2432–2449. https://doi.org/10.1016/j.biocon.2008.07.020

Heled, J., & Drummond, A. J. (2010). Bayesian Inference of Species Trees from Multilocus Data. Molecular Biology and Evolution, 27(3), 570–580. https://doi.org/10.1093/molbev/msp274

Hoban, S., Campbell, C. D., da Silva, J. M., Ekblom, R., Funk, W. C., Garner, B. A., Godoy, J. A., Kershaw, F., MacDonald, A. J., Mergeay, J., Minter, M., O’Brien, D., Vinas, I. P., Pearson, S. K., Pérez-Espona, S., Potter, K. M., Russo, I.-R. M., Segelbacher, G., Vernesi, C., & Hunter, M. E. (2021). Genetic diversity is considered important but interpreted narrowly in country reports to the Convention on Biological Diversity: Current actions and indicators are insufficient. Biological Conservation, 261, 109233. https://doi.org/10.1016/j.biocon.2021.109233

Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17(8), 754–755. https://doi.org/10.1093/bioinformatics/17.8.754

IUCN. (2022). The IUCN Red List of Threatened Species. IUCN Red List of Threatened Species. https://www.iucnredlist.org/en

Jehle, R., & Arntzen, J. W. (2002). Microsatellite markers in amphibian conservation genetics. Herpetological Journal, 12, 1–9.

Kyriakopoulou-Sklavounou, P., Karakousis, Y., & Alexiou, B. (1992). A morphometric and electrophoretic study of two populations of Hyla arborea L. in Greece. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 103(3), 715–719. https://doi.org/10.1016/0305-0491(92)90395-8

Laikre, L. (2010). Genetic diversity is overlooked in international conservation policy implementation. Conservation Genetics, 11(2), 349–354. https://doi.org/10.1007/s10592-009-0037-4

Laikre, L., Allendorf, F. W., Aroner, L. C., Baker, C. S., Gregovich, D. P., Hansen, M. M., Jackson, J. A., Kendall, K. C., McKELVEY, K., Neel, M. C., Olivieri, I., Ryman, N., Schwartz, M. K., Bull, R. S., Stetz, J. B., Tallmon, D. A., Taylor, B. L., Vojta, C. D., Waller, D. M., & Waples, R. S. (2010). Neglect of Genetic Diversity in Implementation of the Convention on Biological Diversity. Conservation Biology, 24(1), 86–88. https://doi.org/10.1111/j.1523-1739.2009.01425.x

Lanfear, R., Calcott, B., Ho, S. Y. W., & Guindon, S. (2012). PartitionFinder: Combined Selection of Partitioning Schemes and Substitution Models for Phylogenetic Analyses. Molecular Biology and Evolution, 29(6), 1695–1701. https://doi.org/10.1093/molbev/mss020

Luquet, E., David, P., Lena, J.-P., Joly, P., Konecny, L., Dufresnes, C., Perrin, N., & Plenet, S. (2011). Heterozygosity-fitness correlations among wild populations of European tree frog (Hyla arborea) detect fixation load: HFC AMONG POPULATIONS DETECT FIXATION LOAD. Molecular Ecology, 20(9), 1877–1887. https://doi.org/10.1111/j.1365-294X.2011.05061.x

Microsoft Corporation. (2022). Microsoft Excel [Computer software]. Microsoft Corporation. https://office.microsoft.com/excel

Nylander, J. A. A. (2004). MRAIC, Ver. 1.44. https://doi.org/Program distributed by the author

Oswald, P., Taddey, K., Auffarth, J., Brandt, T., & Pröhl, H. (2017). Conservation genetics of a mirrored population of the European tree frog (Hyla arborea). SALAMANDRA, 53(3), 368–378.

Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … McKenzie, J. E. (2021). PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ, n160. https://doi.org/10.1136/bmj.n160

Paz‐Vinas, I., Jensen, E. L., Bertola, L. D., Breed, M. F., Hand, B. K., Hunter, M. E., Kershaw, F., Leigh, D. M., Luikart, G., Mergeay, J., Miller, J. M., Van Rees, C. B., Segelbacher, G., & Hoban, S. (2021). Macrogenetic studies must not ignore limitations of genetic markers and scale. Ecology Letters, 24(6), 1282–1284. https://doi.org/10.1111/ele.13732

Peakall, R., & Smouse, P. E. (2006). genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6(1), 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

Phillips, S. (2020). The importance of long-term genetic monitoring of reintroduced populations: Inbreeding in the natterjack toad (Epidalea calamita). Herpetological Journal, Volume 30, Number 3, 159–167. https://doi.org/10.33256/hj30.3.159167

Pidancier, N., Miquel, C., & Miaud, C. (2003). Buccal swabs as a non-destructive tissue sampling method for DNA analysis in amphibians. Herpetological Journal, 13, 175–178.

Pierce, A. A., Gutierrez, R., Rice, A. M., & Pfennig, K. S. (2017). Genetic variation during range expansion: Effects of habitat novelty and hybridization. Proceedings of the Royal Society B: Biological Sciences, 284(1852), 20170007. https://doi.org/10.1098/rspb.2017.0007

Posada, D. (2008). jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution, 25(7), 1253–1256. https://doi.org/10.1093/molbev/msn083

Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of Population Structure Using Multilocus Genotype Data. Genetics, 155(2), 945–959. https://doi.org/10.1093/genetics/155.2.945

R Development Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing [Computer software].

Raymond, M., & Rousset, F. (1995). GENEPOP (ver. 1.2): Population genetics software for exact tests and ecumenicism. Journal of Heredity, 86, 248–249.

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology, 61(3), 539–542. https://doi.org/10.1093/sysbio/sys029

Schiebelhut, L. M., Abboud, S. S., Gómez Daglio, L. E., Swift, H. F., & Dawson, M. N. (2017). A comparison of DNA extraction methods for high‐throughput DNA analyses. Molecular Ecology Resources, 17(4), 721–729. https://doi.org/10.1111/1755-0998.12620

Schneider, S., Roessli, D., & Excoffier, L. (2000). Arlequin ver. 2.000. A software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland.

Segelbacher, G., Bosse, M., Burger, P., Galbusera, P., Godoy, J. A., Helsen, P., Hvilsom, C., Iacolina, L., Kahric, A., Manfrin, C., Nonic, M., Thizy, D., Tsvetkov, I., Veličković, N., Vilà, C., Wisely, S. M., & Buzan, E. (2022). New developments in the field of genomic technologies and their relevance to conservation management. Conservation Genetics, 23(2), 217–242. https://doi.org/10.1007/s10592-021-01415-5

Skerratt, L. F., Berger, L., Speare, R., Cashins, S., McDonald, K. R., Phillott, A. D., Hines, H. B., & Kenyon, N. (2007). Spread of Chytridiomycosis Has Caused the Rapid Global Decline and Extinction of Frogs. EcoHealth, 4(2), 125. https://doi.org/10.1007/s10393-007-0093-5

Speybroeck, J., Beukema, W., Dufresnes, C., Fritz, U., Jablonski, D., Lymberakis, P., Martínez-Solano, I., Razzetti, E., Vamberger, M., Vences, M., Vörös, J., & Crochet, P.-A. (2020). Species list of the European herpetofauna – 2020 update by the Taxonomic Committee of the Societas Europaea Herpetologica. Amphibia-Reptilia, 41(2), 139–189. https://doi.org/10.1163/15685381-bja10010

Stelkens, R. B., Brockhurst, M. A., Hurst, G. D. D., & Greig, D. (2014). Hybridization facilitates evolutionary rescue. Evolutionary Applications, 7(10), 1209–1217. https://doi.org/10.1111/eva.12214

Stöck, M., Dufresnes, C., Litvinchuk, S. N., Lymberakis, P., Biollay, S., Berroneau, M., Borzée, A., Ghali, K., Ogielska, M., & Perrin, N. (2012). Cryptic diversity among Western Palearctic tree frogs: Postglacial range expansion, range limits, and secondary contacts of three European tree frog lineages (Hyla arborea group). Molecular Phylogenetics and Evolution, 65(1), 1–9. https://doi.org/10.1016/j.ympev.2012.05.014

Swofford, D. L., & Selander, R. B. (1989). BIOSYS-1: A computer program for the analysis of allelic variation in population genetics and biochemical systematics, release 1.7. Illinois Natural History Survey, Champaign.

Swofford, D. L., & Sullivan, J. (2003). Phylogeny inference based on parsimony and other methods using PAUP*. In The Phylogenetic Handbook: A Practical Approach to DNA and Protein Phylogeny (pp. 160–206).

Szpiech, Z. A., Jakobsson, M., & Rosenberg, N. A. (2008). ADZE: A rarefaction approach for counting alleles private to combinations of populations. Bioinformatics, 24(21), 2498–2504.

Teixeira, J. C., & Huber, C. D. (2021). The inflated significance of neutral genetic diversity in conservation genetics. Proceedings of the National Academy of Sciences, 118(10), e2015096118. https://doi.org/10.1073/pnas.2015096118

Verardi, A., Canestrelli, D., & Nascetti, G. (2009). Nuclear and Mitochondrial Patterns of Introgression between the Parapatric European Treefrogs Hyla arborea and H. intermedia. Annales Zoologici Fennici, 46(4), 247–258. https://doi.org/10.5735/086.046.0402

Weir, B. S., & Cockerham, C. C. (1984). Estimating F-Statistics for the Analysis of Population Structure. Evolution, 38(6), 1358. https://doi.org/10.2307/2408641

Yang, Z. (2013). BP&P, v.2.2. Manual Distributed with the Software. http:// abacus.gene.ucl.ac.uk/software.html

Downloads

Published

2024-04-29

Issue

Section

Articles

How to Cite

Birbele, E., Di Marzio, A., Grauda, D., Vimercati, G., & Deksne, G. (2024). Genetic diversity of European tree frogs (Hyla arborea group): A systematic review. European Journal of Ecology, 10(1). https://doi.org/10.17161/eurojecol.v10i1.21266