Global climate change effect on Asian Mus musculus; Implication from last glacial maximum to the end of the 21st century
DOI:
https://doi.org/10.17161/eurojecol.v11i1.21766Keywords:
Eurasia, Global warming, House mouse, Rodents, Small mammalsAbstract
Global climate change poses unprecedented challenges to biodiversity, prompting urgent investigations into its effects on various species. This study focuses on Mus musculus, a small rodent species and a crucial indicator of ecosystem health. Spanning from the last glacial maximum to the end of the 21st century, employed Species Distribution Models (SDMs) to assess the impacts of climate change on Mus musculus and its four subspecies across Asia (M. m musculus, M. m domesticus, M. m castaneus, and M. m bactrianus). The SDMs reveal nuanced responses among subspecies, with M. m. domesticus, M. m. musculus, and M. m. castaneus facing potential habitat contractions, while M. m. bactrianus shows habitat expansion. Variable importance analysis highlights the significance of temperature-related variables, indicating the growing impact of rising temperatures on distribution patterns. Findings underscore the ecological implications of these shifts, emphasizing the need for tailored conservation strategies. The robustness of models, as indicated by high Area Under the Curve (AUC) values, enhances confidence in the reliability of predictions. Despite data limitations, this study contributes valuable insights into the complex dynamics between climate change and Mus musculus populations, guiding future conservation efforts in the face of ongoing global environmental transformations.
References
Araujo, M. B., Pearson, R. G., Thuiller, W., Erhard, M. (2005) Validation of species–climate impact models under climate change. Global change biology, 11, 1504–1513. https://doi.org/10.1111/j.1365-2486.2005.01000.x.
Amir Afzali, Y., Darvish, J., Yazdani Moghaddam, F. (2017) Study of rodents’ fauna of the Jiroft, Kerman Province in southeast of Iran. Iranian Journal of Biosystematics, 13, 119–129. https://doi.org/10.22067/ijab.v13i1.59907.
Amir Afzali, Y., Yazdani Moghaddam, F., Dianat, M., Mahmudi, A. (2018) Biosystematics Study of Golunda ellioti Gray, 1837 (Rodentia: Muridae) From Jiroft and Anbarabad Townships in Southeast of Iran. Journal of Research in Biology, 1, 1–5. https://doi.org/10.21859/jresbiol-e1522.
Amir Afzali, Y. & López-Antoñanzas, R. (2024) Molecular phylogeny and historical biogeography of Iranian murids (Rodentia: Muridae). Mammalian Biology, 104, 79–89. https://doi.org/10.1007/s42991-023-00390-3.
Amir Afzali, Y., Naderloo, R., Keikhosravi, A., Klaus, S. (2024) Geographic differentiation in the freshwater crab Potamon persicum Pretzmann, 1962 (Decapoda: Potamidae) in the Zagros Mountains; evidence from morphometry. Zoosystema, 46, 77–93. https://doi.org/10.5252/zoosystema2024v46a4.
Ashrafzadeh, M. R., Naghipour, A. A., Haidarian, M., Kusza, S., Pilliod, D. S. (2019) Effects of climate change on habitat and connectivity for populations of a vulnerable, endemic salamander in Iran. Global Ecology and Conservation, 19, e00637. https://doi.org/10.1016/j.gecco.2019.e00637.
Austrich, A., Kittlein, M. J., Mora, M. S., Mapelli, F. J. (2021) Potential distribution models from two highly endemic species of subterranean rodents of Argentina: which environmental variables have better performance in highly specialized species? Mammalian Biology, 101, 503–519. https://doi.org/10.1007/s42991-021-00150-1.
Bean, W. T., Prugh, L. R., Stafford, R., Butterfield, H. S., Westphal, M., Brashares, J. S. (2014) Species distribution models of an endangered rodent offer conflicting measures of habitat quality at multiple scales. Journal of Applied Ecology, 51, 1116–1125. https://doi.org/10.1111/1365-2664.12281.
Cameron, G. N. & Scheel, D. (2001) Getting warmer: effect of global climate change on distribution of rodents in Texas. Journal of Mammalogy, 82, 652–680. https://doi.org/10.1644/1545-1542(2001)082%3C0652:GWEOGC%3E2.0.CO;2.
Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B., Thomas, C. D. (2011) Rapid range shifts of species associated with high levels of climate warming. Science, 333, 1024–1026. https://doi.org/10.1126/science.1206432.
Darvish, J., Amir Afzali, Y., Hamidi, K. (2012) Further record of Golunda ellioti Gray, 1837 from South East of Iran with notes on its postcranial skeleton. Iranian Journal of Biosystematics, 8, 79–82. https://doi.org/10.22067/ijab.v8i1.25574.
Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J., Collen, B. (2014) Defaunation in the Anthropocene. Science, 345, 401–406. https://doi.org/10.1126/science.1251817.
Grimm, N. B., Chapin III, F. S., Bierwagen, B., Gonzalez, P., Groffman, P. M., Luo, Y., Melton, F., Nadelhoffer, K., Pairis, A., Raymond, P. A., Schimel, J., Williamson, C. E. (2013) The impacts of climate change on ecosystem structure and function. Frontiers in Ecology and the Environment, 11, 474–482. https://doi.org/10.1890/120282.
Gutiérrez‐Tapia, P. & Palma, R. E. (2016) Integrating phylogeography and species distribution models: cryptic distributional responses to past climate change in an endemic rodent from the central Chile hotspot. Diversity and distributions, 22, 638–650. https://doi.org/10.1111/ddi.12433.
Hoveka, L. N., van der Bank, M., Davies, T. J. (2020) Evaluating the performance of a protected area network in South Africa and its implications for megadiverse countries. Biological Conservation, 248, 108577. https://doi.org/10.1016/j.biocon.2020.108577.
Hughes, L. (2000) Biological consequences of global warming: is the signal already apparent? Trends in ecology & evolution, 15, 56–61. https://doi.org/10.1016/S0169-5347(99)01764-4.
Hulme-Beaman, A., Claude, J., Chaval, Y., Evin, A., Morand, S., Vigne, J. D., Dobney, K., Cucchi, T. (2019) Dental shape variation and phylogenetic signal in the Rattini tribe species of Mainland Southeast Asia. Journal of Mammalian Evolution, 26, 435–446. https://doi.org/10.1007/s10914-017-9423-8.
Jiang, G., Liu, J., Xu, L., Yu, G., He, H., Zhang, Z. (2013) Climate warming increases biodiversity of small rodents by favoring rare or less abundant species in a grassland ecosystem. Integrative Zoology, 8, 162–174. https://doi.org/10.1111/1749-4877.12027.
Latinne, A., Meynard, C. N., Herbreteau, V., Waengsothorn, S., Morand, S., Michaux, J. R. (2015) Influence of past and future climate changes on the distribution of three Southeast Asian murine rodents. Journal of Biogeography, 42, 1714–1726. https://doi.org/10.1111/jbi.12528.
Lenoir, J. & Svenning, J. C. (2015) Climate‐related range shifts–a global multidimensional synthesis and new research directions. Ecography, 38, 15–28. https://doi.org/10.1111/ecog.00967.
Levinsky, I., Skov, F., Svenning, J. C., Rahbek, C. (2007) Potential impacts of climate change on the distributions and diversity patterns of European mammals. Biodiversity and Conservation, 16, 3803–3816. https://doi.org/10.1007/s10531-007-9181-7
Meserve, P. L., Kelt, D. A., Previtali, M. A., Milstead, W. B., Gutiérrez, J. R. (2011) Global climate change and small mammal populations in north-central Chile. Journal of Mammalogy, 92, 1223–1235. https://doi.org/10.1644/10-MAMM-S-267.1
Petersen, W. J., Savini, T., Gray, T. N., Baker-Whatton, M., Bisi, F., Chutipong, W., Cremonesi, G., Gale, G. A., Mohamad, S. W., Rayan, D. M., Seuaturien, N., Shwe, N. M., Siripattaranukul, K., Sribuarod, K., Steinmetz, R., Sukumal, N., Ngoprasert, D. (2021) Identifying conservation priorities for an understudied species in decline: Golden cats (Catopuma temminckii) in mainland Tropical Asia. Global Ecology and Conservation, 30, e01762. https://doi.org/10.1016/j.gecco.2021.e01762
Prieto-Torres, D. A., Lira-Noriega, A., Navarro-Sigüenza, A. G. (2020) Climate change promotes species loss and uneven modification of richness patterns in the avifauna associated to Neotropical seasonally dry forests. Perspectives in Ecology and Conservation, 18, 19–30. https://doi.org/10.1016/j.pecon.2020.01.002
Román-Palacios, C. & Wiens, J. J. (2020) Recent responses to climate change reveal the drivers of species extinction and survival. Proceedings of the National Academy of Sciences, 117, 4211–4217. https://doi.org/10.1073/pnas.1913007117
Ramírez‐Albores, J. E., Prieto‐Torres, D. A., Gordillo‐Martínez, A., Sánchez‐Ramos, L. E., Navarro‐Sigüenza, A. G. (2021) Insights for protection of high species richness areas for the conservation of Mesoamerican endemic birds. Diversity and Distributions, 27, 18–33. https://doi.org/10.1111/ddi.13153
Rubenstein, M. A., Christophersen, R., Ransom, J. I. (2019) Trophic implications of a phenological paradigm shift: Bald eagles and salmon in a changing climate. Journal of Applied Ecology, 56, 769–778. https://doi.org/10.1111/1365-2664.13286
Shiels, A. B., Ramírez de Arellano, G. E., Shiels, L. (2022) Invasive rodent responses to experimental and natural hurricanes with implications for global climate change. Ecosphere, 13, e4307. https://doi.org/10.1002/ecs2.4307
Sierra-Morales, P., Rojas-Soto, O., Ríos-Muñoz, C. A., Ochoa-Ochoa, L. M., Flores-Rodríguez, P., Almazán-Núñez, R. C. (2021) Climate change projections suggest severe decreases in the geographic ranges of bird species restricted to Mexican humid mountain forests. Global Ecology and Conservation, 30, e01794. https://doi.org/10.1016/j.gecco.2021.e01794
Vaissi, S. (2021) Potential changes in the distributions of Near Eastern fire salamander (Salamandra infraimmaculata) in response to historical, recent and future climate change in the Near and Middle East: Implication for conservation and management. Global Ecology and Conservation, 29, e01730. https://doi.org/10.1016/j.gecco.2021.e01730
Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J. F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., Rose, S. K. (2011) The representative concentration pathways: an overview. Climatic change, 109, 5–31. https://doi.org/10.1007/s10584-011-0148-z
Wan, X., Yan, C., Wang, Z., Zhang, Z. (2022) Sustained population decline of rodents is linked to accelerated climate warming and human disturbance. BMC Ecology and Evolution, 22, 102. https://doi.org/10.1186/s12862-022-02056-z
Weiskopf, S. R., Rubenstein, M. A., Crozier, L. G., Gaichas, S., Griffis, R., Halofsky, J. E., Hyde, K. J. W., Morelli, T. L., Morisette, J. T., Muñoz, R. C., Pershing, A. J., Peterson, D. L., Poudel, R., Staudinger, M. D., Sutton-Grier, A. E., Thompson, L., Vose, J., Weltzin, J. F., Whyte, K. P. (2020) Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science of the Total Environment, 733, 137782. https://doi.org/10.1016/j.scitotenv.2020.137782
Yousefi, M., Kafash, A., Valizadegan, N., Ilanloo, S. S., Rajabizadeh, M., Malekoutikhah, S., Yousefkhani, S. S. H., Ashrafi, S. (2019) Climate change is a major problem for biodiversity conservation: A systematic review of recent studies in Iran. Contemporary Problems of Ecology, 12, 394–403. https://doi.org/10.1134/S1995425519040127
Zhang, Z., Xu, S., Capinha, C., Weterings, R., Gao, T. (2019) Using species distribution model to predict the impact of climate change on the potential distribution of Japanese whiting Sillago japonica. Ecological Indicators, 104, 333–340. https://doi.org/10.1016/j.ecolind.2019.05.023
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Yaser Amir Afzali

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright in their articles.
Articles in the European Journal of Ecology published 2020 and after are made available under a Creative Commons Attribution 4.0 license.
Articles in the European Journal of Ecology published 2015-2019 are made available under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 license.