Addressing multiple facets of bias and uncertainty in continental scale biodiversity databases
DOI:
https://doi.org/10.17161/bi.v18i.21810Abstract
The availability of biodiversity databases is expanding at unprecedented rates. Nevertheless, species occurrence data can be intrinsically biased and contain uncertainties that impact the accuracy and reliability of biodiversity estimates. In this study, we developed a reproducible framework to assess three dimensions of bias—taxonomic, spatial, and temporal—as well as temporal uncertainty associated with data collections. We utilized the vegetation plot data located in Europe, from sPlotOpen, an open-access database, as a case study. The metrics proposed for estimating bias include completeness of the species richness for taxonomic bias, Nearest Neighbor Index for spatial bias, and Pielou’s index for temporal bias. Additionally, we introduced a new method based on a negative exponential curve to model the temporal decay in biodiversity data, aiming to quantify temporal uncertainty. Finally, we assessed the sampling bias considering the influence of various spatial variables (i.e, road density, human population count, Natura 2000 network and topographic roughness). We discovered that the facets of bias and the temporal uncertainty varied throughout Europe, as did the different roles played by spatial variables in determining biases. sPlotOpen showed a clustered distribution of the vegetation plots, and an uneven distribution in sampling completeness, year of sampling and temporal uncertainty. The facets of bias were significantly explained mainly by the presence of Natura 2000 network and marginally by the human population count. These results suggest that employing an efficient procedure to examine biases and uncertainties in data collections can enhance data quality and provide more reliable biodiversity estimates.
Metrics
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Elisa Marchetto, Martina Livornese, Francesco Maria Sabatini, Enrico Tordoni, Daniele Da Re, Jonathan Lenoir, Riccardo Testolin, Giovanni Bacaro, Roberto Cazzolla Gatti, Alessandro Chiarucci, Giles M. Foody, Lukáš Gábor, Quentin Groom, Jacopo Iaria, Marco Malavasi, V´ıtˇezslav Moudr´y, Diletta Santovito, Petra Šímová, Piero Zannini, Duccio Rocchini
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright for articles published in this journal is retained by the authors, with first publication rights granted to the journal. All articles are licensed under a Creative Commons Attribution Non-Commercial license.
Competing Interests: The authors have declared that no competing interests exist.