INITIAL CHARACTERIZATION OF MAJOR HISTOCOMPATIBILITY COMPLEX (MHC) CLASS IIB EXON 2 IN AN ENDANGERED RATTLESNAKE, THE EASTERN MASSASAUGA (SISTRURUS CATENATUS)
DOI:
https://doi.org/10.17161/jnah.vi1.11909Keywords:
adaptive genetic variation, major histocompatibility complex, positive selection, rattlesnake, Sistrurus catenatus, trans-species polymorphismAbstract
Genes of the major histocompatibility complex (MHC) play an important role in the vertebrate immune system and exhibit remarkably high levels of polymorphism, maintained by strong balancing selection. While the conservation implications of MHC variation have been explored in a variety of vertebrates, non-avian reptiles (most notably snakes) have received less attention. To address this gap and take the first steps toward more extensive population-level analyses, we cloned and sequenced MHC IIB exon 2 in an endangered rattlesnake, the Eastern Massasauga (Sistrurus catenatus). Based on three individuals, we found evidence of at least four putatively functional loci. These sequences exhibited relatively high levels of variation and significantly higher rates of nonsynonymous to synonymous substitutions, especially within the antigen-binding sites, indicating strong positive selection. Phylogenetic analysis revealed a pattern of trans-species polymorphism, also suggesting positive selection. These results contribute to our understanding of MHC variation in non-avian reptiles and form a basis for more studies of MHC variation in snakes of conservation concern.
Downloads
Published
Issue
Section
License
Copyright is held by the authors. Articles in JNAH are made available under a Creative Commons Attribution-NonCommercial 4.0 International license.