Estimating body size in the large carpenter bees (Xylocopa)

Authors

  • Madeleine Ostwald Cheadle Center for Biodiversity and Ecological Restoration, University of California, Santa Barbara, CA, USA https://orcid.org/0000-0002-9869-8835
  • Ryan Hirokawa Cheadle Center for Biodiversity and Ecological Restoration, University of California, Santa Barbara, CA, USA
  • Colleen Smith Cheadle Center for Biodiversity and Ecological Restoration, University of California, Santa Barbara, CA, USA https://orcid.org/0000-0003-0702-6927
  • Sheccid Rivas Trasvina Cheadle Center for Biodiversity and Ecological Restoration, University of California, Santa Barbara, CA, USA
  • Katja Seltmann Cheadle Center for Biodiversity and Ecological Restoration, University of California, Santa Barbara, CA, USA https://orcid.org/0000-0001-5354-6048

DOI:

https://doi.org/10.17161/jom.vi125.23025

Abstract

Body size is a salient functional trait in bees, with implications for reproductive fitness, pollination ecology, and responses to environmental change. Methods for quantifying bee body size commonly rely on indirect estimates and vary widely across studies, particularly in studies of the large carpenter bees (Xylocopa Latreille) (Apidae: Xylocopinini). We evaluate the robustness of three common body size parameters (intertegular distance, head width, and costal vein length) as predictors of dry body mass within and among 11 species of Xylocopa (and 5 subspecies). We found that all three size measurements provide robust body size estimates, accounting for 92–93% of intraspecific variation in body mass. Within species, however, these measurements were considerably less predictive of body mass, explaining on average only 36.8% (intertegular distance), 57.4% (head width), and 38.8% (costal vein length) of the variation in body mass. We also highlight a novel application of photogrammetry and 3D modeling to estimate surface area and volume across species, and comment on the utility of these methods for body size estimates in Xylocopa and in insects more broadly. These findings provide practical guidelines for body size estimation methods within and among carpenter bee species. 

Metrics

File downloads
206
Jan 25 '25Jan 28 '25Jan 31 '25Feb 01 '25Feb 04 '25Feb 07 '25Feb 10 '25Feb 13 '25Feb 16 '25Feb 19 '25Feb 22 '258
|

References

Angilletta, M.J., T.D. Steury, & M.W. Sears. 2004. Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integrative and Comparative Biology 44: 498–509.

Barthell, J.F., & T.A. Baird. 2004. Size variation and aggression among male Xylocopa virginica (L.) (Hymenoptera: Apidae) at a nesting site in Central Oklahoma. Journal of the Kansas Entomological Society 77: 10–20.

Bartomeus, I., J.S. Ascher, J. Gibbs, B.N. Danforth, D.L. Wagner, S.M. Hedtke, & R. Winfree. 2013. Historical changes in northeastern US bee pollinators related to shared ecological traits. Proceedings of the National Academy of Sciences 110(12): 4656–4660. https://doi.org/10.1073/pnas.1218503110

Benjamin, F.E., J.R. Reilly, & R. Winfree. 2014. Pollinator body size mediates the scale at which land use drives crop pollination services. Journal of Applied Ecology 51(2): 440–449. https://doi.org/10.1111/1365-2664.12198

Blackburn, T.M., & K.J. Gaston. 1994. Animal body size distributions: patterns, mechanisms and implications. Trends in Ecology and Evolution 9(12): 471–474. https://doi.org/10.1016/0169-5347(94)90311-5

Blueweiss, L., H. Fox, V. Kudzma, D. Nakashima, R. Peters, & S. Sams. 1978. Relationships between body size and some life history parameters. Oecologia 37(2): 257–272. https://doi.org/10.1007/BF00344996

Bosch, J., & N. Vicens. 2002. Body size as an estimator of production costs in a solitary bee. Ecological Entomology 27: 129–137. https://doi.org/10.1046/j.1365-2311.2002.00406.x

Briscoe, N.J, S.D. Morris, P.D. Mathewson, L.B. Buckley, M. Jusup, O. Levy, I.M.D. Maclean, S. Pincebourde, E.A. Riddell, J.A. Roberts, R. Schouten, M.W. Sears, M.R. Kearney. 2023. Mechanistic forecasts of species responses to climate change: The promise of biophysical ecology. Global Change Biology 29(6): 1451–1470. https://doi.org/10.1111/gcb.16557

Brown, J.H., J.F. Gillooly, A.P. Allen, V.M. Savage, & G.B. West. 2004. Toward a metabolic theory of ecology. Ecology 85(7): 1771–1789. https://doi.org/10.1890/03-9000

Buchmann, S., & R. Minckley. 2019. Large carpenter bees (Xylocopa). In: Starr, C (Ed.), Encyclopedia of Social Insects: 547–550. Springer Nature; New York, NY; xxvi+1049 pp.

Buckley, L.B., M. Urban, M.J. Angilletta, L.G. Crozier, L.J. Rissler, & M. Sears. 2010. Can mechanism inform species distribution models? Ecology Letters 13:1041–1054. https://doi.org/10.1111/j.1461-0248.2010.01479.x

Bullock, S.H. 1999. Relationships among body size, wing size and mass in bees from a tropical dry forest in México. Journal of the Kansas Entomological Society 72(4): 426–439.

Cane, J.H. 1987. Estimation of bee size using intertegular span (Apoidea). Journal of the Kansas Entomological Society 60(1): 145–147.

Cariveau, D.P., G.K. Nayak, I. Bartomeus, J. Zientek, J.S. Ascher, J. Gibbs, & R. Winfree. 2016. The allometry of bee proboscis length and its uses in ecology. PLoS ONE 11(3): e0151482. https://doi.org/10.1371/journal.pone.0151482

Carrié, R., E. Andrieu, S.A. Cunningham, P.E. Lentini, M. Loreau, & A. Ouin. 2017. Relationships among ecological traits of wild bee communities along gradients of habitat amount and fragmentation. Ecography 40(1): 85–97. https://doi.org/10.1111/ecog.02632

Chappell, M.A. 1982. Temperature regulation of carpenter bees (Xylocopa californica) foraging in the Colorado desert of southern California. Physiological Zoology 55(3): 280. https://doi.org/10.1086/physzool.55.3.30157890

Chole, H., S.H. Woodard, & G. Bloch. 2019. Body size variation in bees: regulation, mechanisms, and relationship to social organization. Current Opinion in Insect Science 35: 77–87. https://doi.org/10.1016/j.cois.2019.07.006

Dunn, T., & M. Richards. 2003. When to bee social: Interactions among environmental constraints, incentives, guarding, and relatedness in a facultatively social carpenter bee. Behavioral Ecology 14(3): 417–424. https://doi.org/10.1093/beheco/14.3.417

Gautam, P.P., N. Kumar. 2018. Role of carpenter bee (Xylocopa fenestrata) pollination on fruit and seed yield of ridge gourd, Luffa acutangula L. International Journal of Current Microbiology and Applied Sciences 7(3): 3322–3328. https://doi.org/10.20546/ijcmas.2018.703.383

Gerling, D., & H.R. Hermann. 1978. Biology and mating behavior of Xylocopa virginica L. (Hymenoptera, Anthophoridae). Behavioral Ecology and Sociobiology 3(2): 99–111. https://doi.org/10.1007/BF00294984

Goffinet, A.J., K. Darragh, N. Saleh, M.M. Ostwald, S.L. Buchmann, & S.R. Ramirez. 2023. Individual variation in male pheromone production in Xylocopa sonorina correlates with size and gland color. Journal of Chemical Ecology 50: 1–10. https://doi.org/10.1007/s10886-023-01466-7

Gonzalez, V.H., J.M. Hranitz, C.R. Percival, K.L. Pulley, S.T. Tapsak, T. Tschuelin, T. Petanidou, & J.F. Barthell. 2020. Thermal tolerance varies with dim-light foraging and elevation in large carpenter bees (Hymenoptera: Apidae: Xylocopini). Ecological Entomology 45: 688–696. https://doi.org/10.1111/een.12842

Hagen, M., & Y.L. Dupont. 2013. Inter-tegular span and head width as estimators of fresh and dry body mass in bumblebees (Bombus spp.). Insectes Sociaux 60(2): 251–257. https://doi.org/10.1007/s00040-013-0290-x

Heinrich, B., & S.L. Buchmann. 1986. Thermoregulatory physiology of the carpenter bee, Xylocopa varipuncta. Journal of Comparative Physiology: B 156: 557–562. https://doi.org/10.1007/BF00691042

Hogendoorn, K., & H. Velthuis. 1993. The sociality of Xylocopa pubescens: does a helper really help? Behavioral Ecology and Sociobiology 32: 247–257. https://doi.org/10.1007/BF00166514

Huxley, J.S. 1932. Problems of Relative Growth. Dial Press; New York, NY; xiv+276 pp.

Jauker, B., J. Krauss, F. Jauker, & I. Steffan-Dewenter. 2013. Linking life history traits to pollinator loss in fragmented calcareous grasslands. Landscape Ecology 28: 107–120. https://doi.org/10.1007/s10980-012-9820-6

Jauker, F., M. Speckmann, & V. Wolters. 2016. Intra-specific body size determines pollination effectiveness. Basic and Applied Ecology 17(8): 714–719. https://doi.org/10.1016/j.baae.2016.07.004

Johnson, M.G., J.R. Glass, & J.F. Harrison. 2022. A desert bee thermoregulates with an abdominal convector during flight. Journal of Experimental Biology 225(19): jeb244147. https://doi.org/10.1242/jeb.244147

Keasar, T. 2010. Large carpenter bees as agricultural pollinators. Psyche 2010: 1–7. d https://doi.org/10.1155/2010/927463

Kendall, L.K., R. Rader, V. Gagic, D.P. Cariveau, M. Albrecht, K.C.R. Baldock, B.M. Freitas, M. Hall, A. Holzschuh, F.P. Molina, J.M. Morten, J.S. Pereira, Z.M. Portman, S.P.M. Roberts, J. Rodriguez, L. Russo, L. Sutter, N.J. Vereecken, & I. Bartomeus. 2019. Pollinator size and its consequences: Robust estimates of body size in pollinating insects. Ecology and Evolution 9(4): 1702–1714. https://doi.org/10.1002/ece3.4835

Kouraiss, K., K. El Hariri, A. El Albani, A. Azizi, A. Mazurier, & B. Lefebvre. 2019. Digitization of fossils from the Fezouata Biota (Lower Ordovician, Morocco): Evaluating computed tomography and photogrammetry in collection enhancement. Geoheritage 11: 1889–1901. https://doi.org/10.1007/s12371-019-00403-z

Kühsel, S., A. Brückner, S. Schmelzle, M. Heethoff, & N. Blüthgen. 2017. Surface area – volume ratios in insects. Insect Science 24(5): 829–841. https://doi.org/10.1111/1744-7917.12362

Leys, R., & K. Hogendoorn. 2008. Correlated evolution of mating behaviour and morphology in large carpenter bees (Xylocopa). Apidologie 39: 119–132. https://doi.org/10.1051/apido:2007044

Maebe, K., A.F. Hart, L. Marshall, P. Vandamme, N.J. Vereecken, D. Michez, & G. Smagghe. 2021. Bumblebee resilience to climate change, through plastic and adaptive responses. Global Change Biology 27: 4223–4237. https://doi.org/10.1111/gcb.15751

Marshall, D., & Alcock J. 1981. The evolution of the mating system of the carpenter bee Xylocopa varipuncta (Hymenoptera: Anthophoridae). Journal of Zoology 193(3): 315–324. https://doi.org/10.1111/j.1469-7998.1981.tb03447.x

Minckley, R. 1994. Comparative morphology of the mesosomal ‘gland’ in male large carpenter bees (Apidae: Xylocopini). Biological Journal of the Linnean Society 53(3): 291–308. https://doi.org/10.1111/j.1095-8312.1994.tb01014.x

Nicolson, S.W., & G.N. Louw. 1982. Simultaneous measurement of evaporative water loss, oxygen consumption, and thoracic temperature during flight in a carpenter bee. Journal of Experimental Zoology 222(3): 287–296. https://doi.org/10.1002/jez.1402220311

Ostwald, M.M., B. Lyman, Z. Shaffer, & J.H. Fewell. 2020. Temporal and spatial dynamics of carpenter bee sociality revealed by CT imaging. Insectes Sociaux 67(2): 203–212. https://doi.org/10.1007/s00040-020-00761-w

Ostwald, M.M., J. Alba-Tercedor, R.L. Minckley, & S.L. Buchmann. 2022. Three-dimensional morphology of the hypertrophied sex pheromone gland in a lek-mating carpenter bee (Xylocopa sonorina) revealed by micro computed tomography and scanning electron microscopy. Apidologie 53(60): 1–10. https://doi.org/10.1007/s13592-022-00967-w

Ostwald, M.M., T.P. Fox, J.F. Harrison, & J.H. Fewell. 2021. Social consequences of energetically costly nest construction in a facultatively social bee. Proceedings of the Royal Society: B 288: 20210033. https://doi.org/10.1098/rspb.2021.0033

Ostwald, M.M., V.H. Gonzalez, C. Chang, N. Vitale, M. Lucia, & K.C. Seltmann. 2024. Toward a functional trait approach to bee ecology. Ecology and Evolution 14(10): e70465. https://doi.org/10.1002/ece3.70465

Peso, M., & M. Richards. 2010. Knowing who’s who: nestmate recognition in the facultatively social carpenter bee, Xylocopa virginica. Animal Behaviour 79(3): 563–570. https://doi.org/10.1016/j.anbehav.2009.11.010

Peters, M.K., J. Peisker, I. Steffan-Dewenter, & B. Hoiss. 2016. Morphological traits are linked to the cold performance and distribution of bees along elevational gradients. Journal of Biogeography 43: 2040–2049. https://doi.org/10.1111/jbi.12768

Peters, R.H. 1983. The Ecological Implications of Body Size. Cambridge Studies in Ecology. Cambridge University Press; Cambridge, UK; xii+329 pp.

Porter, W.P., & D.M. Gates. 1969. Thermodynamic equilibria of animals with environment. Ecological Monographs 39(3): 227–244. https://doi.org/10.2307/1948545

R Core Team. 2022. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org.

Richards, M., & C. Course. 2015. Ergonomic skew and reproductive queuing based on social and seasonal variation in foraging activity of eastern carpenter bees (Xylocopa virginica). Canadian Journal of Zoology 93(8): 615–625. https://doi.org/10.1139/cjz-2014-0330

Richards, M.H. 2011. Colony social organisation and alternative social strategies in the eastern carpenter bee, Xylocopa virginica. Journal of Insect Behavior 24(5): 399–411. https://doi.org/10.1139/cjz-2014-0330

Roberts S.P., & J.F. Harrison. 1999. Mechanisms of thermal stability during flight in the honeybee Apis mellifera. Journal of Experimental Biology 202(11): 1523–1533. https://doi.org/10.1242/jeb.202.11.1523

Roberts, S.P., J.F. Harrison, & R. Dudley. 2004. Allometry of kinematics and energetics in carpenter bees (Xylocopa varipuncta) hovering in variable-density gases. Journal of Experimental Biology 207(6): 993–1004. https://doi.org/10.1242/jeb.00850

Rust, R.W. 1991. Size-weight relationships in Osmia lignaria propinqua Cresson (Hymenoptera: Megachilidae). Journal of the Kansas Entomological Society 64(2):174–178. https://www.jstor.org/stable/25085267

Saleh, N.W., M.M. Ostwald, & S.R. Ramírez. 2023. Cuticular and glandular chemistry are correlated with ovary size in two populations of the facultatively social carpenter bee, Xylocopa sonorina. Preprint: Research Square: https://doi.org/10.21203/rs.3.rs-2500644/v1

Skandalis, D., G. Tattersall, S. Prager, & M.H. Richards. 2009. Body size and shape of the large carpenter bee, Xylocopa virginica (L.) (Hymenoptera: Apidae). Journal of the Kansas Entomological Society 82(1): 30–42. https://doi.org/10.2317/JKES711.05.1

Smith, C., S. Reyes, K.A. Ryan, M. Smith, E. Deer, E. Sanchez, S.R. Trasvina, G.A. Kung, A.L. Carper, & K.C. Seltmann. 2024. UCSB’s 3D imaging and modeling protocol. protocols.io: https://doi.org/10.5281/zenodo.10594883

Tsuboi, M., B.T. Kopperud, C. Syrowatka, M. Grabowski, K.L. Voje, C. Pélabon, & T.F. Hansen. 2020. Measuring complex morphological traits with 3D photogrammetry: A case study with deer antlers. Evolutionary Biology 47(2): 175–186. https://doi.org/10.1007/s11692-020-09496-9

Vickruck, J, & M.H. Richards. 2017. Nestmate discrimination based on familiarity but not relatedness in eastern carpenter bees. Behavioral Processes 145: 73–80. https://doi.org/10.1016/j.beproc.2017.10.005

Vickruck, J, & M.H. Richards. 2018. Linear dominance hierarchies and conditional reproductive strategies in a facultatively social carpenter bee. Insectes Sociaux 64(4): 619–629. https://doi.org/10.1007/s00040-018-0653-4

Vickruck, J., & M.H. Richards. 2021. Competition drives group formation and reduces within nest relatedness in a facultatively social carpenter bee. Frontiers in Ecology and Evolution 9: 738809. https://doi.org/10.3389/fevo.2021.738809

Downloads

Published

24-01-2025

How to Cite

Ostwald, M., Hirokawa, R., Smith, C., Rivas Trasvina, S., & Seltmann, K. (2025). Estimating body size in the large carpenter bees (Xylocopa). Journal of Melittology, 125. https://doi.org/10.17161/jom.vi125.23025