First report of gynandromorphy in Hoplitis: A bilateral specimen of Hoplitis (Alcidamea) producta (Hymenoptera: Megachilidae)
DOI:
https://doi.org/10.17161/jom.vi129.23384Abstract
A bilateral gynandromorph of Hoplitis (Alcidamea) producta (Cresson) is described and illustrated for the first time. The specimen is notable for its nearly complete bilateral asymmetry and represents the first recorded case of gynandromorphism in Hoplitis. A summary of literature records on gynandromorphic bees is provided.
Metrics
References
Aamidor, S. E., B. Yagound, I. Ronai, & B.P. Oldroyd. 2018. Sex mosaics in the honeybee: How haplodiploidy makes possible the evolution of novel forms of reproduction in social Hymenoptera. Biology Letters 14(11): 20180670. https://doi.org/10.1098/rsbl.2018.0670
Akre, R.D., E.P. Catts, R.S. Zack, & E.C. Klostermeyer. 1982. Gynandromorphs of Megachile rotundata (Fab.) (Hymenoptera: Megachile). Entomological News 93(4): 85‒94. https://biostor.org/reference/77147
Ascher, J.S., & J. Pickering. 2020. Discover Life Bee Species Guide and World Checklist (Hymenoptera: Apoidea: Anthophila). http://www.discoverlife.org/mp/20q?guide=Apoidea_species (accessed 7 Nov 2024).
Boveri, T. 1915. Über die Entstehung der Eugsterschen Zwitterbienen. Archiv für Entwicklungsmechanik der Organismen 41: 264‒311.
Carril, O.M., & J.S. Wilson. 2023. Common Bees of Western North America (Vol. 124). Princeton University Press; Princeton, New Jersey, USA; 416 pp.
Cresson, E.T. 1864. On the North American species of several genera of Apidae. Proceedings of the Entomological Society of Philadelphia 2: 373–411.
Engel, M.S. 2007. A lateral gynandromorph in the bee genus Thyreus and the sting mechanism in the Melectini (Hymenoptera: Apidae). American Museum Novitates (3553): 1‒11. https://doi.org/10.1206/0003-0082(2007)530[1:ALGITB]2.0.CO;2
Heimpel, G.E., & J.G. de Boer. 2008. Sex determination in the Hymenoptera. Annual Review of Entomology 53(1): 209‒230. https://doi.org/10.1146/annurev.ento.53.103106.093441
Hinojosa‐Díaz, I.A., V.H. Gonzalez, R. Ayala, J. Mérida, P. Sagot, & M.S. Engel. 2012. New orchid and leaf‐cutter bee gynandromorphs, with an updated review (Hymenoptera, Apoidea). Zoosystematics and Evolution 88(2): 205‒214. https://doi.org/10.1002/zoos.201200017
Hurd, P. D., & C.D. Michener. 1955. The megachiline bees of California (Hymenoptera: Megachilidae). Bulletin of the California Insect Survey 3: 1–247.
Koch, J.B.U., M.G. Branstetter, D.L. Cox-Foster, J. Knoblett, T.T. Lindsay, T. Pitts-Singer, A.T. Rohde, J.P. Strange, & K.B. Tobin. 2023. Novel microsatellite markers for Osmia lignaria (Hymenoptera: Megachilidae): A North American pollinator of agricultural crops and wildland plants. Journal of Insect Science 23(1): 1‒11. https://doi.org/10.1093/jisesa/ieac077
Lanner, J., F. Gstöttenmayer, M. Curto, B. Geslin, K. Huchler, M.C. Orr, B. Pachinger, C. Sedivy, & H. Meimberg. 2021. Evidence for multiple introductions of an invasive wild bee species currently under rapid range expansion in Europe. BMC Ecology and Evolution 21: 1‒15. https://doi.org/10.1186/s12862-020-01729-x
Lucia, M., S. Villamil, & V.H. Gonzalez. 2015. A gynandromorph of Xylocopa augusti and an unusual record of X. iris from Brazil (Hymenoptera: Apidae: Xylocopini). Journal of Melittology (53): 1‒7. https://doi.org/10.17161/jom.v0i53.4979
Michener, C.D. 1944. The distribution of the osmiine bees of the deserts of North America. The American Naturalist 78(776): 257–266.
Michener, C.D. 1947. A revision of the American species of Hoplitis (Hymenoptera, Megachilidae). Bulletin of the American Museum of Natural History 89(4): 257–318.
Michener, C.D. 2007. The Bees of the World [2nd Edition]. Johns Hopkins University Press; Baltimore, MD; xvi+[i]+953 pp., +20 pls.
Michez, D., P. Rasmont, M. Terzo, & N.J. Vereecken. 2009. A synthesis of gynandromorphy among wild bees (Hymenoptera: Apoidea), with an annotated description of several new cases. Annales de la Societe Entomologique de France 45: 365–375. https://doi.org/10.1080/00379271.2009.10697621
Morgan, T.H. 1916. The Eugster gynandromorph bees. The American Naturalist 50(589): 39‒45.
Morgan, T.H., & C.B. Bridges. 1919. The origin of gynandromorphs. In: Contributions to the Genetics of Drosophila melanogaster: 1–122, +4 pls. Carnegie Institution of Washington; Washington, D.C.; v+388 pp., +12 pls.
Narita, S., R.A.S. Pereira, F. Kjellberg, & D. Kageyama. 2010. Gynandromorphs and intersexes: potential to understand the mechanism of sex determination in arthropods. Terrestrial Arthropod Reviews 3(1): 63–96. https://doi.org/10.1163/187498310X496190
Neumann, K., & K. Seidelmann. 2006. Microsatellites for the inference of population structures in the Red Mason bee Osmia rufa (Hymenoptera, Megachilidae). Apidologie 37(1): 75‒83. https://doi.org/10.1051/apido:2005060
Page Jr, R.E., J. Gadau, & M. Beye. 2002. The emergence of hymenopteran genetics. Genetics 160(2): 375‒379. https://doi.org/10.1093/genetics/160.2.375
Rau, P. 1928. The nesting habits of the pulp‐making bee, Alcidamea Producta Cress. Psyche: A Journal of Entomology 35(2): 100‒107. https://doi.org/10.1155/1928/84370
Rohde, A.T., M.G. Branstetter, K.E. Mock, J.N. Knoblett, D.S. Pilliod, J.G. Everett, P. Galpern, & J.P. Strange. 2024. Population genetics of museum specimens indicate decreasing genetic resiliency: The case of two bumble bees of conservation concern. Biological Conservation 291: 110453. https://doi.org/10.1016/j.biocon.2024.110453
Sommaggio, D., G. Fusco, M. Uliana, & A. Minelli. 2021. Possible epigenetic origin of a recurrent gynandromorph pattern in Megachile wild bees. Insects 12(5): 437. https://doi.org/10.3390/insects12050437
Strange, J.P., J. Knoblett, & T. Griswold. 2009. DNA amplification from pin-mounted bumble bees (Bombus) in a museum collection: effects of fragment size and specimen age on successful PCR. Apidologie 40(2): 134‒139. https://doi.org/10.1051/apido/2008070
Suzuki, K.M., D.C. Giangarelli, D.G. Ferreira, W. Frantine-Silva, S.C. Augusto, & S.H. Sofia. 2015. A scientific note on an anomalous diploid individual of Euglossa melanotricha (Apidae, Euglossini) with both female and male phenotypes. Apidologie 46: 495‒498. https://doi.org/10.1007/s13592-014-0339-5
Van Eeckhoven, G.J. Horsburgh, D.A. Dawson, K. Mayer, A. Bretman, & E.J. Duncan. 2022. Development of a multiplex microsatellite marker set for the study of the solitary red mason bee, Osmia bicornis (Megachilidae). Molecular Biology Reports 49(1): 783‒788. https://doi.org/10.1007/s11033-021-06796-x
Van Wilgenburg, E., G. Driessen, & L.W. Beukeboom. 2006. Single locus complementary sex determination in Hymenoptera: an "unintelligent" design? Frontiers in Zoology 3:1‒15. https://doi.org/10.1186/1742-9994-3-1
Wcislo, W.T., V.H. Gonzalez, & L. Arneson. 2004. A review of deviant phenotypes in bees in relation to brood parasitism, and a gynandromorphy of Megalopta genalis (Hymenoptera: Halictidae). Journal of Natural History 38(11): 1443–1457. https://doi.org/10.1080/0022293031000155322

Downloads
Additional Files
Published
Issue
Section
License
Copyright (c) 2025 Mark S. Gorman, Lincoln R. Best

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright for articles published in Journal of Melittology is retained by the authors, with first publication rights granted to the journal. By virtue of their appearance in this open access journal, articles are free to use, with proper attribution and permission of the authors, in educational and other non-commercial settings.