Standardized protocol for collecting bee samples for parasite and pathogen data
DOI:
https://doi.org/10.17161/jom.vi123.22598Abstract
Internal parasites and pathogens have not been a focus of wild bee systematic data collection efforts to-date but are important to document because they have been strongly linked to bee declines. Here, we provide a standardized protocol for collecting fresh bee tissue samples for generating parasite and pathogen data. The protocol emphasizes appropriate handling and storage conditions and data standards. It can be embedded within bee health monitoring projects or used by individual data collection efforts that aim to generate parasite and pathogen data now and in the future. This protocol is part of a series developed in association with the U.S. National Native Bee Monitoring Network to standardize bee monitoring practices.
Metrics
References
Arbetman, M.P., I. Meeus, C.L. Morales, A. Marcelo, & G. Smagghe. 2013. Alien parasite hitchhikes to Patagonia on invasive bumblebee. Biological Invasions 15: 489–494. https://doi.org/10.1007/s10530-012-0311-0.
Alger, S.A., P.A. Burnham, H.F. Boncristiani, & A.K. Brody. 2019a. RNA virus spillover from managed honeybees (Apis mellifera) to wild bumblebees (Bombus spp.). PLoS ONE 14: e0217822. https://doi.org/10.1371/journal.pone.0217822.
Alger, S.A., P.A. Burnham, & A.K. Brody. 2019b. Flowers as viral hot spots: Honey bees (Apis mellifera) unevenly deposit viruses across plant species. PLoS ONE 14: e0221800. https://doi.org/10.1371/journal.pone.0221800.
Burnham, P.A., S.A. Alger, B. Case, H. Boncristiani, L. Hébert-Dufresne, & A.K. Brody. 2021. Flowers as dirty doorknobs: Deformed wing virus transmitted between Apis mellifera and Bombus impatiens through shared flowers. Journal of Applied Ecology 58: 2065–2074. https://doi.org/10.1111/1365-2664.13962.
Bartolomé, C., M. Higes, R.M. Hernández, Y.P. Chen, J.D. Evans, & Q. Huang. 2024. The recent revision of the genera Nosema and Vairimorpha (Microsporidia: Nosematidae) was flawed and misleads bee scientific community. Journal of Invertebrate Pathology 206: 108146. https://doi.org/10.1016/j.jip.2024.108146.
Cameron, S.A., J.D. Lozier, J.P. Strange, J.B. Koch, N. Cordes, L.F. Solter, & T.L. Griswold. 2011. Patterns of widespread decline in North American bumble bees. Proceedings of the National Academy of Sciences 108(2): 662–667. https://doi.org/10.1073/pnas.1014743108.
Cameron, S.A., H.C. Lim, J.D. Lozier, M.A. Duennes, & R. Thorp. 2016. Test of the invasive pathogen hypothesis of bumble bee decline in North America. Proceedings of the National Academy of Sciences 113(16): 4386–4391. https://doi.org/10.1073/pnas.1525266113.
Cameron, S.A. & B.M. Sadd. 2020. Global trends in bumble bee health. Annual Review of Entomology 65(1): 209–232. https://doi.org/10.1146/annurev-ento-011118-111847.
Cariveau, D.P., K.L.J. Hung, D.W. Inouye, N.W. Williams, C.T. Burns, I. Lane, R.E. Irwin, H.K. Levenson, B. Du Clos, & S.H. Woodard. 2024. Standardized protocol for collecting plant-pollinator interaction data. Journal of Melittology 123(4): 1–x.
Cardoso, B., I. García-Bocanegra, P. Acevedo, G. Cáceres, P.C. Alves, & C. Gortázar. 2022. Stepping up from wildlife disease surveillance to integrated wildlife monitoring in Europe. Research in Veterinary Science 144: 149–156. https://doi.org/10.1016/j.rvsc.2021.11.003.
Colla, S., M. Otterstatter, R. Gegear, & J. Thomas. 2006. Plight of the bumble bee: pathogen spillover from commercial to wild populations. Biological Conservation 129: 461–467. doi:10.1016/j.biocon.2005.11.013.
Cordes, N., W.F. Huang, J.P. Strange, S.A. Cameron, T.L. Griswold, J.D. Lozier, & L.F. Solter. 2012. Interspecific geographic distribution and variation of the pathogens Nosema bombi and Crithidia species in United States bumble bee populations. Journal of Invertebrate Pathology 109: 209–216. https://doi.org/10.1016/j.jip.2011.11.005.
Deutsch, K.R., J.R. Graham, H.F. Boncristiani, T. Bustamante, A.N. Mortensen, D.R. Schmehl, A.E. Wedde, D.L. Lopez, J.D. Evans, & J.D. Ellis. 2023. Widespread distribution of honey bee-associated pathogens in native bees and wasps: Trends in pathogen prevalence and co-occurrence. Journal of Invertebrate Pathology 200: 107973. https://doi.org/10.1016/j.jip.2023.107973.
Dietemann, V., F. Nazzi, S.J. Martin, D.L. Anderson, B. Locke, K.S. Delaplane, Q. Wauquiez, C. Tannahill, E. Frey, B. Ziegelmann, & P. Rosenkranz. 2013. Standard methods for varroa research. Journal of Apicultural Research 52(1): 1–54. https://doi.org/10.3896/IBRA.1.52.1.09
Du Clos, B., K.C. Seltmann, N.E. Turley, C. Maffei, E.M. Tucker, I. Lane, H.K. Levenson, & S.H. Woodard. 2024a. The Wild Bee Data Standard. Journal of Melittology 123(2): 1–x.
Du Clos, B., K.C. Seltmann, N.E. Turley, C. Maffei, E.M. Tucker, I.G. Lane, H.K. Levenson, & S.H. Woodard. 2024b. Templates for The Wild Bee Data Standard (1.0.0). Zenodo. https://doi.org/10.17161/jom.vi123.22533
Evans, E., J. Strange, B. Sadd, A. Tripodi, L. Figueroa, L. Adams, S. Colla, M. Duennes, D. Lehmann, H. Moylett, & L. Richardson. 2023. Parasites, parasitoids, and hive products that are potentially deleterious to wild and commercially raised bumble bees (Bombus spp.) in North America. Journal of Pollination Ecology 33: 37–53. https://doi.org/10.26786/1920-7603(2023)710.
Evison, S.E., K.E. Roberts, L. Laurenson, S. Pietravalle, J. Hui, J.C. Biesmeijer, J.E. Smith, G. Budge, & W.O. Hughes. 2012. Pervasiveness of parasites in pollinators. PloS ONE 7(1): e30641. https://doi.org/10.1371/journal.pone.0030641.
Evison, S.E. & A.B. Jensen. 2018. The biology and prevalence of fungal diseases in managed and wild bees. Current Opinion in Insect Science 26: 105–113. https://doi.org/10.1016/j.cois.2018.02.010
Figueroa, L.L., S. Compton, H. Grab, & S.H. McArt. 2021. Functional traits linked to pathogen prevalence in wild bee communities. Scientific Reports 11(1): 7529. https://doi.org/10.1038/s41598-021-87103-3.
Figueroa, L.L., M. Blinder, C. Grincavitch, A. Jelinek, E.K. Mann, L.A. Merva, L.E. Metz, A.Y. Zhao, R.E. Irwin, & L.S. Adler. 2019. Bee pathogen transmission dynamics: Deposition, persistence and acquisition on flowers. Proceedings of the Royal Society B 286(1903): 20190603. https://doi.org/10.1098/rspb.2019.0603
Figueroa, L., B. Sadd, A. Tripodi, J. Strange, S. Colla, L. Adams, M. Duennes, E. Evans, D. Lehmann, H. Moylett, L. Richardson, J. Smith, T. Smith, E. Spevak, & D. Inouye. 2023. Endosymbionts that threaten commercially raised and wild bumble bees (Bombus spp.). Journal of Pollination Ecology 33:14–36. https://doi.org/10.26786/1920-7603(2023)713.
Flanders, R.V., W.F. Wehling, & A.L. Craghead. 2003. Laws and regulations on the import, movement, and release of bees in the United States: For nonnative crops, whence pollinators of the future? (ed. by K Strickler, JH Cane) Proceedings of the Thomas Say Publications in Entomology. Entomological Society of America, Lanham, MD, pp. 99–111. https://doi.org/10.4182/ZSGH5376.2003.99
Fries, I., R.J. Paxton, J. Tengö, S.B. Slemenda, A.J. da Silva, & N.J. Pieniazek. 1999. Morphological and molecular characterization of Antonospora scoticae n. gen., n. sp. (Protozoa, Microsporidia) a parasite of the communal bee, Andrena scotica Perkins, 1916 (Hymenoptera, Andrenidae). European Journal of Protistology 35: 183–193. https://doi.org/10.1016/S0932-4739(99)80036-4.
Fünfhaus, A., J. Ebeling, & E. Genersch. 2018. Bacterial pathogens of bees. Current Opinion in Insect Science 26: 89–96. https://doi.org/10.1016/j.cois.2018.02.008.
Fürst, M.A., D.P. McMahon, J.L. Osborne, R.J. Paxton, & M.J.F. Brown. 2014. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506: 364–366. https://doi.org/10.1038/nature12977
Gibbons, M., A. Crump, M. Barrett, S. Sarlak, J. Birch, & L. Chittka. 2022. Can insects feel pain? A review of the neural and behavioural evidence. Advances in Insect Physiology 63: 155–229. https://doi.org/10.1016/bs.aiip.2022.10.001
Graystock, P., W.H. Ng, K. Parks, A.D. Tripodi, P.A. Muñiz, A.A. Fersch, C.R. Myers, Q.S. McFrederick, & S.H. McArt. 2020. Dominant bee species and floral abundance drive parasite temporal dynamics in plant-pollinator communities. Nature Ecology & Evolution 4: 1358–1367. https://doi.org/10.1038/s41559-020-1247-x.
Graystock, P., K. Yates, S.E.F. Evison, B. Darvill, D. Goulson, & W.O.H. Hughes. 2013. The Trojan hives: pollinator pathogens, imported and distributed in bumblebee colonies. Journal of Applied Ecology 50: 1207–1215. doi:10.1111/1365-2664.12134.
Grozinger, C.M., & M.L. Flenniken. 2019. Bee viruses: Ecology, pathogenicity, and impacts. Annual Review of Entomology 64: 205–226. https://doi.org/10.1146/annurev-ento-011118-111942.
Grupe, A.C. & C.A. Quandt. 2020. A growing pandemic: A review of Nosema parasites in globally distributed domesticated and native bees. PLoS Pathogens 16(6): e1008580. https://doi.org/10.1371/journal.ppat.1008580.
Hristov, P., R. Shumkova, N. Palova, & B. Neov. 2020. Factors associated with honey bee colony losses: A mini-review. Veterinary Sciences 7(4): 166. https://doi.org/10.3390/vetsci7040166.
Jones, L.J., R.P. Ford, R.J. Schilder, & M.M. López-Uribe. 2021. Honey bee viruses are highly prevalent but at low intensities in wild pollinators of cucurbit agroecosystems. Journal of Invertebrate Pathology 185: 107667. https://doi.org/10.1016/j.jip.2021.107667.
Jones, L.J., A. Singh, R.J. Schilder, & M.M. López-Uribe. 2022. Squash bees host high diversity and prevalence of parasites in the northeastern United States. Journal of Invertebrate Pathology 195: 107848. https://doi.org/10.1016/j.jip.2022.107848.
Kapheim, K.M., V.D. Rao, C.J. Yeoman, B.A. Wilson, B.A. White, N. Goldenfeld, & G.E. Robinson. 2015. Caste-specific differences in hindgut microbial communities of honey bees (Apis mellifera). PLoS ONE 10(4): e0123911. https://doi.org/10.1371/journal.pone.0123911.
Klinger, E.G., R.R. James, N.N. Youssef, & D.L. Welker. 2013. A multi-gene phylogeny provides additional insight into the relationships between several Ascosphaera species. Journal of Invertebrate Pathology 112(1): 41–48. https://doi.org/10.1016/j.jip.2012.10.011.
Larsson, J.I.R. 2007. Cytological variation and pathogenicity of the bumble bee parasite Nosema bombi (Microspora, Nosematidae). Journal of Invertebrate Pathology 94: 1–11. https://doi.org/10.1016/j.jip.2006.07.006.
LeCroy, K.A., E. Krichilsky, H.L. Grab, T.A.H. Roulston, & B.N. Danforth. 2023. Spillover of chalkbrood fungi to native solitary bee species from non‐native congeners. Journal of Applied Ecology 60(6): 1067–1076. https://doi.org/10.1111/1365-2664.14399.
Lee, K., N. Steinhauer, D.A. Travis, M.D. Meixner, J. Deen, & D. vanEngelsdorp. 2015. Honey bee surveillance: a tool for understanding and improving honey bee health. Current Opinion in Insect Science 10: 37–44. https://doi.org/10.1016/j.cois.2015.04.009.
Levenson, H.K. & D.R. Tarpy. 2022. Effects of planted pollinator habitat on pathogen prevalence and interspecific detection between bee species. Scientific Reports 12: 7806. https://doi.org/10.1038/s41598-022-11734-3.
Lipa, J.J & O. Triggiani. 1996. Apicystis gen nov and Apicystis bombi (Liu, Macfarlane & Pengelly) comb nov (Protozoa: Neogregarinida), a cosmopolitan parasite of Bombus and Apis (Hymenoptera: Apidae). Apidologie 27: 29–34. https://doi.org/10.1051/apido:19961014.
López-Uribe, M.M., V.A. Ricigliano, & M. Simone-Finstrom. 2020. Defining pollinator health: A holistic approach based on ecological, genetic, and physiological factors. Annual Review of Animal Biosciences 8: 269–294. https://doi.org/10.1146/annurev-animal-020518-115045.
McArt, S.H., H. Koch, R.E. Irwin, & L.S. Adler. 2014. Arranging the bouquet of disease: Floral traits and the transmission of plant and animal pathogens. Ecology Letters 17(5): 624–636. https://doi.org/10.1111/ele.12257.
McMahon, D., M. Fürst, J. Caspar, P. Theodorou, M. Brown, & R. Paxton. 2015. A sting in the spit: Widespread cross-infection of multiple RNA viruses across wild and managed bees. Journal of Animal Ecology 84. https://doi.org/10.1111/1365-2656.12345.
Montero‐Castaño, A., J.B.U. Koch, T.T.T. Lindsay, B. Love, J.M. Mola, K. Newman, & J.K. Sharkey. 2022. Pursuing best practices for minimizing wild bee captures to support biological research. Conservation Science and Practice 4(7): 12734. https://doi.org/10.1111/csp2.12734.
Morner, T., D.L. Obendorf, M. Artois, & M.H. Woodford. 2002. Surveillance and monitoring of wildlife diseases. Revue Scientifique et Technique-Office International des Epizooties 21(1): 67–76. https://doi.org/10.20506/rst.21.1.1321.
Moussy, C., I.J. Burfield, P.J. Stephenson, A.F. Newton, S.H. Butchart, W.J. Sutherland, R.D. Gregory, L. McRae, P. Bubb, I. Roesler, C. Ursino, Y. Wu, E.F. Retief, J.S. Udin, R. Urazaliyev, L.M. Sánchez-Clavijo, E. Lartey, & P.F. Donald. 2022. A quantitative global review of species population monitoring. Conservation Biology 36(1): e13721. https://doi.org/10.1111/cobi.13721.
Otti, O., & P. Schmid-Hempel. 2007. Nosema bombi: A pollinator parasite with detrimental fitness effects. Journal of Invertebrate Pathology 96: 118–124. https://doi.org/10.1016/j.jip.2007.03.016.
Page, M.L., & N.M. Williams. 2023. Honey bee introductions displace native bees and decrease pollination of a native wildflower. Ecology 104(2): e3939. https://doi.org/10.1002/ecy.3939.
Poinar, G.O., & P.A. Van Der Laan. 1972. Morphology and life history of Sphaerularia bombi. Nematologica 18: 239–252. https://doi.org/10.1163/187529272X00476.
Rutrecht, T. & M. Brown. 2008. The life-history impact and implications of multiple parasites for bumble bee queens. International Journal for Parasitology 38: 799–808. doi:10.1016/j.ijpara.2007.11.004.
Sammataro, D., U. Gerson, & G. Needham. 2000. Parasitic mites of honey bees: Life history, implications, and impact. Annual Review of Entomology 45(1): 519–548. https://doi.org/10.1146/annurev.ento.45.1.519.
Schwarz, R.S., É.W. Teixeira, J.P. Tauber, J.M. Birke, M.F. Martins, I. Fonseca, & J.D. Evans. 2014. Honey bee colonies act as reservoirs for two Spiroplasma facultative symbionts and incur complex, multiyear infection dynamics. MicrobiologyOpen 3: 341–355. https://doi.org/10.1002/mbo3.172.
Strange, J.P., S. Colla, L.D. Adams, M.A. Duennes, E.C. Evans, L.L. Figueroa, D.M. Lehmann, H. Moylett, L. Richardson, B.M. Sadd, J.W. Smith, T.A. Smith, A.D. Tripodi, & D.W. Inouye. 2023. An evidence-based rationale for a North American commercial bumble bee clean stock certification program. Journal of Pollination Ecology 33: 1–13. https://doi.org/10.26786/1920-7603(2023)721.
Tehel, A., T. Streicher, S. Tragust, & R.J. Paxton. 2020. Experimental infection of bumblebees with honeybee-associated viruses: No direct fitness costs but potential future threats to novel wild bee hosts. Royal Society Open Science 7: 200480. https://dx.doi.org/10.1098/rsos.200480.
Tissier, M.L., B. Cole, S. Mackell, L.S. Adler, S.J. MacIvor, P. Bergeron, C. Callaghan, G. Labrie, S. Colla, & V. Fournier. 2024. Fecal sampling protocol to assess bumble bee health in conservation research. Journal of Pollination Ecology 35: 122–134. https://doi.org/10.26786/1920-7603(2024)783.
Van Eijsden, R.G., C. Stassen, L. Daenen, S.E. Van Mulders, P.M. Bapat, V. Siewers, K,V. Goossens, J. Nielsen, F.R. Delvaux, P. Van Hummelen, & B. Devreese. 2013. A universal fixation method based on quaternary ammonium salts (RNAlater) for omics-technologies: Saccharomyces cerevisiae as a case study. Biotechnology Letters 35: 891–900. https://doi.org/10.1007/s10529-013-1163-0.
Wieczorek, J., D. Bloom, R. Guralnick, S. Blum, M. Döring, R. Giovanni, T. Robertson, & D. Vieglais. 2012. Darwin Core: An Evolving Community-Developed Biodiversity Data Standard. PLoS One 7(1): e29715. https://doi.org/10.1371/journal.pone.0029715.

Downloads
Published
Issue
Section
License
Copyright (c) 2025 James P. Strange, Margarita M. Lopez-Uribe, Liam Whiteman, Bryan N. Danforth, Shalene Jha, Hannah K. Levenson, Brianne Du Clos, Jonathan Berenguer Uhuad Koch, S. Hollis Woodard

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright for articles published in Journal of Melittology is retained by the authors, with first publication rights granted to the journal. By virtue of their appearance in this open access journal, articles are free to use, with proper attribution and permission of the authors, in educational and other non-commercial settings.