Critical thermal maxima differ between groups of insect pollinators and their foraging times: Implications for their responses to climate change

Authors

  • Margarita M López-Uribe The Pennsylvania State University
  • Maren K. Appert San Diego State University
  • Alonso X. Delgado University of Texas
  • Andrés F. Herrera-Motta University of Kansas
  • Abigail Jimenez California State University
  • Ruben D. Martín-Rojas The Pennsylvania State University
  • Victor M. Ramos-Abensur Pontificia Universidad Católica del Perú
  • Diego A. Riaño-Jimenez Fundación Clínica Shaio
  • José R. Cure Universidad Militar Nueva Granada
  • Jose D. Fuentes The Pennsylvania State University
  • Luis O. Duque The Pennsylvania State University
  • Victor H. Gonzalez University of Kansas https://orcid.org/0000-0002-4146-1634

DOI:

https://doi.org/10.17161/jom.vi122.22505

Abstract

Insects perform essential roles within ecosystems and can be vulnerable to climate change because of their small body size and limited capacity to regulate body temperature. Several groups of insects, such as bees and flies, are important pollinators of wild and cultivated plants. However, aspects of their thermal biology remain poorly studied, which limits predictions of their responses to climate change. We assessed the critical thermal maximum (CTMax) of bees and flies visiting flowers in urban and periurban areas in tropical and subtropical regions of the Americas. We also assessed the effect of the foraging time of the day on CTMax. Overall, we found that bees displayed higher CTMax than flies. Flies foraging in the morning and afternoon displayed similar CTMax while bees in the morning displayed a higher CTMax than in the afternoon. The results of this study suggest differences in the vulnerability to climate change between these two major groups of pollinators, with flies being more at risk.

Metrics

Metrics Loading ...

References

Angilletta, M.J., & M.J. Angilletta Jr. 2009. Thermal Adaptation: A Theoretical and Empirical Synthesis. Oxford University Press; New York, NY, USA; 302 pp.

Bates, D., M. Maechler, B. Bolker, S. Walker, R.H.B. Christensen, H. Singmann, B. Dai, G. Grothendieck, P. Green, & M.B. Bolker. 2015. Package ‘lme4’. convergence, 12(1): 2.

Bennett, J.M., J. Sunday, P. Calosi, F. Villalobos, B. Martínez, R. Molina-Venegas, M.B. Araújo, A.C. Algar, S. Clusella-Trullas, B.A. Hawkins, & S.A Keith. 2021. The evolution of critical thermal limits of life on Earth. Nature communications12(1): 1198.

Da Silva, C.R., J.E. Beaman, J.B. Dorey, S.J. Barker, N.C. Congedi, M.C. Elmer, S. Galvin, M. Tuiwawa, M.I. Stevens, L.A. Alton & M.P. Schwarz. 2021. Climate change and invasive species: A physiological performance comparison of invasive and endemic bees in Fiji. Journal of Experimental Biology 224(1): jeb230326.

Diamond, S.E., D.M. Sorger, J. Hulcr, S.L. Pelini, I. Del Toro, C. Hirsch, E. Oberg, & R.R. Dunn. 2012. Who likes it hot? A global analysis of the climatic, ecological, and evolutionary determinants of warming tolerance in ants. Global Change Biology 18(2): 448–56.

Diamond, S.E., & A.R. Yilmaz. 2018. The role of tolerance variation in vulnerability forecasting of insects. Current Opinion in Insect Science 29: 85–92.

Fox, J., S. Weisberg, B. Price, D. Adler, D. Bates, G. Baud-Bovy, & B. Bolker. 2019. Car: Companion to Applied Regression. R Package Version 3.0-2.” Website https://CRAN. R-Project. Org/package= Car [accessed 17 March 2020].

García-Robledo, C., E.K. Kuprewicz, D. Dierick, S. Hurley, & A. Langevin. 2020. The affordable laboratory of climate change: devices to estimate ectotherm vital rates under projected global warming. Ecosphere 11(5): e03083.

García-Robledo, C., E.K. Kuprewicz, C.L. Staines, T.L. Erwin, & W.J. Kress. 2016. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proceedings of the National Academy of Sciences of the United States of America 113(3): 680–685.

Garcia‐Robledo, C., H. Chuquillanqui, E.K. Kuprewicz, & F. Escobar‐Sarria. 2018. Lower thermal tolerance in nocturnal than in diurnal ants: a challenge for nocturnal ectotherms facing global warming. Ecological Entomology 43(2): 162–167.

Gonzalez, V.H., J.M. Hranitz, C.R. Percival, K.L. Pulley, S.T. Tapsak, T. Tscheulin, T. Petanidou, & J.F. Barthell. 2020. Thermal tolerance varies with dim‐light foraging and elevation in large carpenter bees (Hymenoptera: Apidae: Xylocopini). Ecological Entomology 45(3): 688–96.

Gonzalez, V.H., K. Oyen, N. Vitale, & R. Ospina. 2022. Neotropical stingless bees display a strong response in cold tolerance with changes in elevation. Conservation Physiology 10 (1): coac073.

Hamblin, A.L., E. Youngsteadt, M.M. López-Uribe, & S.D. Frank. 2017. Physiological thermal limits predict differential responses of bees to urban heat-island effects. Biology Letters 13(6): 20170125.

Harrison, J.F., H.A. Woods, & S.P. Roberts. 2012. Ecological and Environmental Physiology of Insects. Oxford University Press; Oxford, UK; 390 pp.

Harvey, J., K. Tougeron, R. Gols, R. Heinen, M. Abarca, P.K. Abram, Y. Basset, M. Berg, C. Boggs, J. Brodeur, P. Cardoso, J.G. de Boer, G. De Snoo, C. Deacon, J.E. Dell, N. Desneux, M.E. Dillon, G.A. Duffy, L. Dyer, E. Jacintha, A. Espíndola, J. Fordyce, M. Forister, C. Fukushima, C. García-Robledo, C. Gely, M. Gobbi, C. Hallmann, T. Hance, J. Harte, A. Hochkirch, C. Hof, A.A. Hoffmann, J.G. Kingsolver, G.P.A. Lamarre, W.F. Laurance, B. Lavandero, S.R. Leather, P. Lehmann, C. Le Lann, M.M. López-Uribe, C.-S. Ma, G. Ma, J. Moiroux, L, Monticelli, C. Nice, P.J. Ode, S. Pincebourde, W.J. Ripple, M. Rowe, M.J. Samways, A. Sentis, A.A. Shah, N. Stork, J.S. Terblanche, M.P. Thakur, M.B. Thomas, J,M. Tylianakis, J. Van Baaren, M. Van de Pol, W.H. Van der Putten, H. Van Dyck, W.C. E. P. Verberk, D.L. Wagner, W.W. Weisser, W.C. Wetzel, H.A. Woods, K.A.G. Wyckhuys & S.L. Chown (2022) Scientists’ warning on climate change and insects. Ecological Monographs 93(1): e1553.

Jones, L.J., D.A. Miller, R.J. Schilder, and M.M. López-Uribe. 2024. Body mass, temperature, and pathogen intensity differentially affect critical thermal maxima and their population‐level variation in a solitary bee. Ecology and Evolution 14(2): e10945.

Kellermann, V., J. Overgaard, A.A. Hoffmann, C. Fløjgaard, J.C. Svenning, & V. Loeschcke. 2012. Upper thermal limits of drosophila are linked to species distributions and strongly constrained phylogenetically. Proceedings of the National Academy of Sciences of the United States of America 109(40): 16228–16233.

Klein, A-M., B.E. Vaissière, J.H. Cane, I. Steffan-Dewenter, S.A. Cunningham, C. Kremen, & T. Tscharntke. 2007. Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences 274(1608): 303–313.

Leclerc, M.A.J., L. Guivarc’h, C.R. Lazzari, & S. Pincebourde. 2022. Thermal tolerance of two Diptera that pollinate thermogenic plants. Journal of Thermal Biology 109: 103339.

López-Uribe, M.M., J.V. Urbina, A.I. Mejía, L.O. Duque, D. Riaño-Jiménez, J.R. Cure, V. Ramos, C. Martel, J.D. Fuentes, & V.H. González. 2022. Creating a virtual international research experience. American Entomologist 68(1): 24–27.

Lutterschmidt, W.I., & V.H. Hutchison. 1997. The critical thermal maximum: history and critique. Canadian Journal of Zoology 75(10): 1561–1574.

McArt, S.H., C. Urbanowicz, S. McCoshum, R.E. Irwin, & L.S. Adler. 2017. Landscape predictors of pathogen prevalence and range contractions in US bumblebees. Proceedings. Proceedings of the Royal Society B: Biological Sciences 284 (1867): 20172181.

McCabe, L.M., & N.S. Cobb. 2021. From bees to flies: Global shift in pollinator communities along elevation gradients. Frontiers in Ecology and Evolution 8: 626124.

Nascimento, G., T. Câmara, & X. Arnan. 2022. Critical thermal limits in ants and their implications under climate change. Biological Reviews 97(4): 1287–1305.

Ollerton, J., R. Winfree, & S. Tarrant. 2011. How many flowering plants are pollinated by animals? Oikos 120(3): 321–326.

Orr, M.C., A.C. Hughes, D. Chesters, J. Pickering, C.D. Zhu, & J.S. Ascher. 2021. Global patterns and drivers of bee distribution. Current Biology 31(3): 451–458.

Ørsted, M., L.B. Jørgensen, & J. Overgaard. 2022. Finding the right thermal limit: a framework to reconcile ecological, physiological and methodological aspects of CTmax in ectotherms. Journal of Experimental Biology 225(19): jeb244514.

Oyen, K.J., S. Giri, & M.E. Dillon. 2016. Altitudinal variation in bumble bee (Bombus) critical thermal limits. Journal of Thermal Biology 59: 52–57.

Roeder, D.V., A.W. Paraskevopoulos, & K.A. Roeder. 2022. Thermal tolerance regulates foraging behaviour of ants. Ecological Entomology 47(3): 331–338.

Turley, N.E., D.J. Biddinger, N.K. Joshi, & M.M. López-Uribe. 2022. Six years of wild bee monitoring shows changes in biodiversity within and across years and declines in abundance. Ecology and Evolution 12(8): e9190.

Zattara, E.E., & M.A. Aizen. 2021. Worldwide occurrence records suggest a global decline in bee species richness. One Earth 4(1): 114–23.

Bees and flies

Published

11-10-2024

How to Cite

López-Uribe, M. M., Appert, M. K., Delgado, A. X. ., Herrera-Motta, A. F., Jimenez, A., Martín-Rojas, R. D. ., Ramos-Abensur, V. M., Riaño-Jimenez, D. A., Cure, J. R., Fuentes, J. D., Duque, L. O., & Gonzalez, V. H. (2024). Critical thermal maxima differ between groups of insect pollinators and their foraging times: Implications for their responses to climate change. Journal of Melittology, 122. https://doi.org/10.17161/jom.vi122.22505

Most read articles by the same author(s)

<< < 1 2