65 degrees of bee thermal biology

Authors

DOI:

https://doi.org/10.17161/jom.vi131.24009

Abstract

Addressing global bee declines requires multidisciplinary, coordinated, and collaborative action. This contribution highlights ongoing efforts to build multidisciplinary and international partnerships among researchers from the University of Wyoming, the University of Kansas, and the Universidade de São Paulo, Brazil, spanning nearly 65 degrees of latitude, to explore how bees respond to changing temperatures. This document summarizes key insights from a mini-symposium held on May 12, 2025, and preliminary collaborative studies conducted between May 8 and 15, 2025, at the Universidade de São Paulo. The mini-symposium brought together faculty and researchers from different Brazilian universities, along with both undergraduate and graduate students, creating a dynamic exchange of ideas across institutions and career stages. Emerging themes from the discussions included the inconsistent use of terminology and methods for assessing thermal biology, critical gaps in taxonomic and life-history coverage, restricted access to expensive equipment and the need for more accessible approaches, and the opportunity to incorporate alternative metrics of thermal tolerance in future studies. 

Resumo. Ações coordenadas, colaborativas e multidisciplinares são essenciais para enfrentar o declínio global das abelhas. Esta contribuição destaca um esforço atual para estabelecer parcerias internacionais e interdisciplinares entre pesquisadores da Universidade de Wyoming, da Universidade do Kansas e da Universidade de São Paulo (Brasil), abrangendo quase 65 graus de latitude, com o objetivo de investigar como as abelhas respondem às mudanças de temperatura. O documento apresenta os principais insights de um mini-simpósio realizado em 12 de maio de 2025, bem como de estudos colaborativos preliminares conduzidos entre 8 e 15 de maio de 2025, na Universidade de São Paulo. O evento reuniu docentes e pesquisadores de diversas universidades brasileiras, além de alunos de graduação e pós-graduação, promovendo uma troca rica e dinâmica de ideias entre diferentes instituições e níveis de experiência acadêmica. Entre os temas emergentes das discussões destacaram-se: o uso inconsistente de terminologias e métodos na avaliação da biologia térmica, lacunas significativas na cobertura taxonômica e de história de vida, o acesso limitado a equipamentos caros e a consequente necessidade de metodologias mais acessíveis e a oportunidade de incorporar métricas alternativas de tolerância térmica em pesquisas futuras.

Metrics

Metrics Loading ...

References

Biesmeijer, J. C. 2006. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313: 351–354. https://doi.org/10.1126/science.1127863

Botsch, J.C., Daniels, J.D., Bujan, J., & K.A. Roeder. 2024. Temperature influences desiccation resistance of bumble bees. Journal of Insect Physiology 155: 104647. https://doi.org/10.1016/j.jinsphys.2024.104647

Carvalheiro, L.G., Cordeiro, G.D., Marques, B.F., Menezes, P.P., Consorte, P.M., & T.C. Gianinni. 2025. Challenges for quantifying knowledge shortfalls on tropical pollinators in the face of global environmental change – Brazilian bees as a case study. Sociobiology 72(2): e11276. https://doi.org/10.13102/sociobiology.v72i2.11276

Campion, C., Rajamohan, A., & M.E. Dillon. 2023. Sperm can’t take the heat: Short-term temperature exposures compromise fertility of male bumble bees (Bombus impatiens). Journal of Insect Physiology 146: 104491. https://doi.org/10.1016/j.jinsphys.2023.104491

Corbet, S.A., Fussell, M., Ake, R., Fraser, A., Gunson, C., Savage, A., & K. Smith. 1993. Temperature and the pollinating activity of social bees. Ecological Entomology 18(1): 17–30. https://doi.org/10.1111/j.1365-2311.1993.tb01075.x

Cowles, R.B., & C.M. Bogert. 1944. A preliminary study of the thermal requirements of desert reptiles. Bulletin of the American Museum of Natural History 83(5): 261–296. http://hdl.handle.net/2246/1237

Dillon, M.E., Wang, G., Garrity, P.A., & R.B. Huey. 2009. Thermal preference in Drosophila. Journal of Thermal Biology 34(3): 109–119. https://doi.org/10.1016/j.jtherbio.2008.11.007

Forrest, J.R.K., Cross, R., & P.J. CaraDonna. 2019. Two-year bee, or not two-year bee? How voltinism is affected by temperature and season length in a high-elevation solitary bee. The American Naturalist 193(4): 560–574. https://doi.org/10.1086/701826

Gérard, M., Amiri, A., Cariou, B., & E. Baird. 2022. Short-term exposure to heatwave-like temperatures affects learning and memory in bumblebees. Global Change Biology 28: 4251–4259. https://doi.org/10.1111/gcb.16196

Giannini, T.C., Costa, W.F., Cordeiro, G.D., Imperatriz-Fonseca, V.L., Saraiva, A.M., Biesmeijer, J., & L.A. Garibaldi. 2017. Projected climate change threatens pollinators and crop production in Brazil. PLos ONE 12(8): e0182274. https://doi.org/10.1371/journal.pone.0182274

Glass, J.R., & J.F. Harrison. 2024. A thermal performance curve perspective explains decades of disagreements over how air temperature affects the flight metabolism of honey bees. Journal of Experimental Biology 227(7): jeb246926. https://doi.org/10.1242%2Fjeb.246926

Gonzalez, V.H., Hranitz, J.M., Percival, C.R., Pulley, K.L., Tapsak, S.T., Tscheulin, T., Petanidou, T., & J.F. Barthell. 2020. Thermal tolerance varies with dim-light foraging and elevation in large carpenter bees (Hymenoptera: Apidae: Xylocopini). Ecological Entomology 45: 688–696. https://doi.org/10.1111/een.12842

Gonzalez, V.H., Cobos, M.E., Jaramillo, J., & R. Ospina. 2021. Climate change will reduce the potential distribution ranges of Colombia’s most valuable pollinators. Perspectives in Ecology and Conservation 19(2): 195–206. https://doi.org/10.1016/j.pecon.2021.02.010

Gonzalez, V.H., Oyen, K., Aguilar, M.L., Herrera, A., Martin, R.D., R. Ospina. 2022. High thermal tolerance in high-elevation species and laboratory-reared colonies of tropical bumble bees. Ecology and Evolution 12(12): e9560. https://doi.org/10.1002/ece3.9560

Gonzalez, V.H., Manweiler, R., Smith, A.R., Oyen, K., Cardona, D., & T.W. Wcislo. 2023. Low heat tolerance and high desiccation resistance in nocturnal bees and the implications for nocturnal pollination under climate change. Scientific Reports 13: 22320. https://doi.org/10.1038/s41598-023-49815-6

Gonzalez, V.H., Herbison, N., Robles Perez, G., Panganiban, T., Haefner, L., Tscheulin, T., Petanidou, T., & J. Hranitz. 2024. Bees display limited acclimation capacity for heat tolerance. Biology Open 13(3): bio060179. https://doi.org/10.1242/bio.060179

Hammer, T.J., Le, E., & N.A. Moran. 2021. Thermal niches of specialized gut symbionts: The case of social bees. Proceedings of the Royal Society B: Biological Sciences 288: 20201480. https://doi.org/10.1098/rspb.2020.1480

Harano, K-I., & M. Hrncir. 2023. Big in the tropics-Are there thermal advantages of large body size for carpenter bees in hot climates? Ecological Entomology 48(3): 358–370. https://doi.org/10.1111/een.13230

López-Uribe, M.M., Appert, M.K., Delgado, A.X., Herrera-Motta, A.F., Jimenez, A., Martín-Rojas, R.D., Ramos-Abensur, V.M., Riaño-Jimenez, D.A., Cure, J.R., Fuentes, J.D., Duque, L.O., & Gonzalez, V.H. 2024. Critical thermal maxima differ between groups of insect pollinators and their foraging times: Implications for their responses to climate change. Journal of Melittology 122: 1–8. https://doi.org/10.17161/jom.vi122.22505

Łopuch, S., & K. Czekońska. 2025. Thermal preferences of honey bee drones at different ages, depending on the rearing temperature. Apidologie 56(2):30. https://doi.org/10.1007/s13592-025-01162-3

Lutterschmidt, W.I., & V.H. Hutchison. 1997. The critical thermal maximum: Data to support the onset of spasms as the definitive end point. Canadian Journal of Zoology 75(10): 1553–1560. https://doi.org/10.1139/z97-782

Macías-Macías, J.O., Quezada-Euán, J.J.G., Contreras-Escareño, F., Tapia-Gonzalez, J.M., Moo-Valle, H., & R. Ayala. 2011. Comparative temperature tolerance in stingless bee species from tropical highlands and lowlands of Mexico and implications for their conservation (Hymenoptera: Apidae: Meliponini). Apidologie 42: 679–689. https://doi.org/10.1007/s13592-011-0074-0

MacQueen, S.A., Stanley, D.A., & J.M. Yearsley. 2025. Thermal limits of bumblebees and honeybees are modulated by different functional traits: Predictions of a mechanistic model. PLoS ONE 20(5): e0320038. https://doi.org/10.1371/journal.pone.0320038

Maia-Silva, C., da Silva Pereira, J., Freitas, B.M., & M. Hrncir. 2020. Don’t stay out too long! Thermal tolerance of the stingless bees Melipona subnitida decreases with increasing exposure time to elevated temperatures. Apidologie 52: 218–229. https://doi.org/10.1007/s13592-020-00811-z

Marshall, L., Perdijk, F., Dendoncker, N., Kunin, W., Roberts, S., & J.C. Biesmeijer. 2020. Bumblebees moving up: Shifts in elevation ranges in the Pyrenees over 115 years. Proceedings of the Royal Society B: Biological Sciences 287: 20202201. https://doi.org/10.1098/rspb.2020.2201

Martinet, B., Dellicour, S., Ghisbain, G., Przybyla, K., Zambra, E., Lecocq, T., Boustani, M., Baghirov, R., Michez, D., & P. Rasmont. 2021. Global effects of extreme temperatures on wild bumblebees. Conservation Biology 35(5): 1507–1518. https://doi.org/10.1111/cobi.13685

Oyen, K.J., Giri, S., M.E. Dillon. 2016. Altitudinal variation in bumble bee (Bombus) critical thermal limits. Journal of Thermal Biology 59: 52–57. https://doi.org/10.1016/j.jtherbio.2016.04.015

Pardee, G.L., Griffin, S.R., Stemkovski, M., Harrison, T., Portman, Z.M., Kazenel, M.R., Lynn, J.S., Inouye, D.W., & R.E. Irwin. 2022. Life-history traits predict responses of wild bees to climate variation. Proceedings of the Royal Society B: Biological Sciences 289: 20212697. https://doi.org/10.1098/rspb.2021.2697

Pimsler, M.L., Oyen, K.J., Herndon, J.D., Jackson, J.M., Strange, J.P., Dillon, M.E., & J.D. Lozier. 2020. Biogeographic parallels in thermal tolerance and gene expression variation under temperature stress in a widespread bumble bee. Scientific Reports 10: 17063. https://doi.org/10.1038/s41598-020-73391-8

Potts, S.G., Biesmeijer, J.C., Kremen, C., Neumann, P., Schweiger, O., & W.E. Kunin. 2010. Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution 25(6): 345–353. https://doi.org/10.1016/j.tree.2010.01.007

Soroye, P., Newbold, T., & J. Kerr. 2020. Climate change contributes to widespread declines among bumble bees across continents. Science 367(6478): 685–688. https://doi.org/10.1126/science.aax8591

Souza-Junior, J.B.F., Teixeira-Souza, V.H. da S., Oliveira-Souza, A., de Oliveira, P.F., de Queiroz, J.P.A.F., & M. Hrncir. 2020. Increasing thermal stress with flight distance in stingless bees (Melipona subnitida) in the Brazilian tropical dry forest: Implications for constraint on foraging range. Journal of Insect Physiology 123: 104056. https://doi.org/10.1016/j.jinsphys.2020.104056

Sunday, J.M., Bates, A.E., & N.K. Dulvy. 2011. Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society B: Biological Sciences 278: 1823–1830. https://doi.org/10.1098/rspb.2010.1295

Telemeco, R.S., & E.J. Gangloff. 2021. Introduction to the special issue–Beyond CTMax and CTMin: Advances in studying the thermal limits of reptiles and amphibians. Journal of Experimental Zoology A Ecological and Integrative Physiology 335: 5–12. https://doi.org/10.1002/jez.2447

Terblanche, J.S., Deere, J.A., Clusella-Trullas, S., Janion, C., & S.L. Chown. 2007. Critical thermal limits depend on methodological context. Proceedings of the Royal Society B: Biological Sciences 274: 2935–2943. https://doi.org/10.1098/rspb.2007.0985

White, S.A., & M.E. Dillon. 2023. Climate warming and bumble bee declines: The need to consider sub-lethal heat, carry-over effects, and colony compensation. Frontiers in Physiology 14: 1251235. https://doi.org/10.3389/fphys.2023.1251235

Bee group

Downloads

Published

27-05-2025

Issue

Section

Review or Commentary

How to Cite

Dillon, M., Gonzalez, V., & Hrncir, M. (2025). 65 degrees of bee thermal biology. Journal of Melittology, 131. https://doi.org/10.17161/jom.vi131.24009