Modeling human phenotypes in the nematode C. elegans during an undergraduate developmental biology course

Authors

  • Sireen Aburaide Augsburg University
  • Pader Xiong Augsburg University
  • Daniel Wolfson Augsburg University
  • Tashi Wangmo Augsburg University
  • Anthony Vassallo Augsburg University
  • DJ Smith Augsburg University
  • Madeline Shaw Augsburg University
  • Luis Millan Augsburg University
  • Samantha Meyer Augsburg University
  • Bobby Lee Augsburg University
  • Divine Katasi Augsburg University
  • Evelyn Juen Augsburg University
  • Allison Hookam Augsburg University
  • Ahmed Elewa Miami University
  • Yoskar Deleon Augsburg University
  • Mason Chamberlain Augsburg University
  • Ahmed Suad Augsburg University
  • Lian Yaeger Augsburg University

DOI:

https://doi.org/10.17161/mjusc.v4i1.24548

Keywords:

C.. elegans, nematode, developmental, microbiology

Abstract

Caenorhabditis elegans is a widely used model organism in biomedical research due to its genetic tractability, short life cycle, and conservation of many developmental processes with humans. In this study, undergraduate students conducted nine independent experiments during a Developmental Biology course to model human phenotypes using C. elegans. Each group selected a human phenotype of interest, identified a gene associated with the phenotype, and then determined the orthologous or homologous gene in C. elegans. By obtaining mutants and designing phenotypic assays, students investigated the extent to which the worm models could recapitulate aspects of the human condition. This collective work highlights both the potential and limitations of C. elegans as a model for human phenotypic variation and disease and demonstrates the value of undergraduate inquiry as a catalyst for scientific engagement and research-based learning.

References

1. Brownell, Sara E, Hekmat-Scafe, Daria S, Singla, Veena, Chandler Seawell, Patricia, Conklin Imam, Jamie F, Eddy, Sarah L, et al. (2015). A high-enrollment course-based undergraduate research experience improves student conceptions of scientific thinking and ability to interpret data. CBE life sciences education 14, 14:ar21. https://doi.org/10.1187/cbe.14-05-0092 PMID: 26033869

2. Malotky, Michele K H, Mayes, Kayla M, Price, Kailyn M, Smith, Gustavo, Mann, Sherese N, Guinyard, Mesha W, et al. (2020). Fostering Inclusion through an Interinstitutional, Community-Engaged, Course-Based Undergraduate Research Experience. Journal of microbiology & biology education 21. https://doi.org/10.1128/jmbe.v21i1.1939 PMID: 32431766

3. Gargano, Michael A, Matentzoglu, Nicolas, Coleman, Ben, Addo-Lartey, Eunice B, Anagnostopoulos, Anna V, Anderton, Joel, et al. (2024). The Human Phenotype Ontology in 2024: phenotypes around the world. Nucleic acids research 52, D1333-D1346. https://doi.org/10.1093/nar/gkad1005 PMID: 37953324

4. Sternberg, Paul W, Van Auken, Kimberly, Wang, Qinghua, Wright, Adam, Yook, Karen, Zarowiecki, Magdalena, et al. (2024). WormBase 2024: status and transitioning to Alliance infrastructure. Genetics 227. https://doi.org/10.1093/genetics/iyae050 PMID: 38573366

5. Markaki M, Tavernarakis N. Caenorhabditis elegans as a model system for human diseases (2020). Curr Opin Biotechnol 63:118-125. https://doi.org/10.1016/j.copbio. 2019.12.011 PMID: 31951916.

6. Loges LN, Walstrom KM. Modeling human glucose-6-phosphate dehydrogenase mutations using C. elegans GSPD-1 (2021). microPublication Biology. https://doi.org/10.17912/micropub.biology.000451 PMID: 34532700.

7. Duan Y, Li L, Panzade GP, Piton A, Zinovyeva A, Ambros V. Modeling neurodevelopmental disorder-associated human AGO1 mutations in Caenorhabditis elegans Argonaute alg-1 (2024). Proceedings of the National Academy of Sciences of the United States of America 5;121(10):e2308255121. https://doi.org/10.1073/pnas.2308255121 PMID: 38412125.

8. Sayers, Eric W, Bolton, Evan E, Brister, J Rodney, Canese, Kathi, Chan, Jessica, Comeau, Donald C, et al. (2022). Database resources of the national center for biotechnology information. Nucleic acids research 50, D20-D26. https://doi.org/10.1093/nar/gkab1112 PMID: 34850941

9. UniProt Consortium (2025). UniProt: the Universal Protein Knowledgebase in 2025. Nucleic acids research 53, D609-D617. https://doi.org/10.1093/nar/gkae1010 PMID:39552041

10. Jumper, John, Evans, Richard, Pritzel, Alexander, Green, Tim, Figurnov, Michael, Ronneberger, Olaf, et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589. https://doi.org/10.1038/s41586-021-03819-2 PMID: 34265844

11. Varadi, Mihaly, Bertoni, Damian, Magana, Paulyna, Paramval, Urmila, Pidruchna, Ivanna, Radhakrishnan, Malarvizhi, et al. (2024). AlphaFold Protein Structure Database in 2024: providing structure coverage for over 214 million protein sequences. Nucleic acids research 52, D368-D375. https://doi.org/10.1093/nar/gkad1011 PMID:37933859

12. Stelzer, Gil, Rosen, Naomi, Plaschkes, Inbar, Zimmerman, Shahar, Twik, Michal, Fishilevich, Simon, et al. (2016). The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Current protocols in bioinformatics 54, 1.30.1-1.30.33. https://doi.org/10.1002/cpbi.5 PMID: 27322403

13. McFerrin, Lisa G, Atchley, William R (2011). Evolution of the Max and Mlx networks in animals. Genome biology and evolution 3, 915-37. https://doi.org/10.1093/gbe/evr082 PMID: 21859806

14. Arunachalam, Bergwitz, Clemens, Berger, Bonnie, Perrimon, Norbert, et al. (2011). An integrative approach to ortholog prediction for disease-focused and other functional studies. BMC bioinformatics 12, 357.

15. Johnson, David W, Llop, Jesse R, Farrell, Sara F, Yuan, Jie, Stolzenburg, Lindsay R, Samuelson, Andrew V (2014). The Caenorhabditis elegans Myc-Mondo/Mad complexes integrate diverse longevity signals. PLoS genetics 10, e1004278. https://doi.org/10.1371/journal.pgen.1004278 PMID:24699255

16. Dacković, J, Keckarević-Marković, M, Komazec, Z, Rakocević-Stojanović, V, Lavrnić, D, Stević, Z, et al. (2008). Hereditary motor and sensory neuropathy Lom type in a Serbian family. Acta myologica 27, 59-62. PMID: 19364063

17. Goodman, M B, Hall, D H, Avery, L, Lockery, S R (1998). Active currents regulate sensitivity and dynamic range in C. elegans neurons. Neuron 20, 763-72. https://doi.org/10.1016/s0896-6273(00)81014-4 PMID: 9581767

18. Steger, Katherine A, Shtonda, Boris B, Thacker, Colin, Snutch, Terrance P, Avery, Leon (2005). The C. elegans T-type calcium channel CCA-1 boosts neuromuscular transmission. The Journal of experimental biology 208, 2191-203. https://doi.org/10.1242/jeb.01616 PMID: 15914662

19. Sibley, M H, Graham, P L, von Mende, N, Kramer, J M (1994). Mutations in the alpha 2(IV) basement membrane collagen gene of Caenorhabditis elegans produce phenotypes of differing severities. The EMBO journal 13, 3278-85. https://doi.org/10.1002/j.1460-2075.1994.tb06629.x PMID: 8045258

20. Shen, G (2005). The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage. Orthodontics & craniofacial research 8, 11-7. https://doi.org/10.1111/j.1601-6343.2004.00308.xPMID: 15667640

21. McGary, Kriston L, Park, Tae Joo, Woods, John O, Cha, Hye Ji, Wallingford, John B, Marcotte, Edward M (2010). Systematic discovery of nonobvious human disease models through orthologous phenotypes. Proceedings of the National Academy of Sciences of the United States of America 107, 6544-9. https://doi.org/10.1073/pnas.0910200107 PMID: 20308572

22. Suzuki, Y, Yandell, M D, Roy, P J, Krishna, S, Savage-Dunn, C, Ross, R M, et al. (1999). A BMP homolog acts as a dose-dependent regulator of body size and male tail patterning in Caenorhabditis elegans. Development 126, 241-50. https://doi.org/10.1242/dev.126.2.241 PMID: 9847238

23. Addo, Matthew Glover, Cossard, Raynald, Pichard, Damien, Obiri-Danso, Kwasi, Rötig, Agnès, Delahodde, Agnès (2010). Caenorhabditis elegans, a pluricellular model organism to screen new genes involved in mitochondrial genome maintenance. Biochimica et biophysica acta 1802, 765-73. https://doi.org/10.1016/j.bbadis. 2010.05.007 PMID: 20580819

24. Bratic, Ivana, Hench, Jürgen, Henriksson, Johan, Antebi, Adam, Bürglin, Thomas R, Trifunovic, Aleksandra (2009). Mitochondrial DNA level, but not active replicase, is essential for Caenorhabditis elegans development. Nucleic acids research 37, 1817-28. https://doi.org/10.1093/nar/gkp018 PMID:19181702

25. DeVore, D L, Horvitz, H R, Stern, M J (1995). An FGF receptor signaling pathway is required for the normal cell migrations of the sex myoblasts in C. elegans hermaphrodites. Cell 83, 611-20. https://doi.org/10.1016/0092-8674(95)90101-9 PMID:7585964

26. Jia, Kailiang, Chen, Di, Riddle, Donald L (2004). The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131, 3897-906. https://doi.org/10.1242/dev.01255 PMID:15253933

27. Zhu, Huanhu, Shen, Huali, Sewell, Aileen K, Kniazeva, Marina, Han, Min (2013). A novel sphingolipid-TORC1 pathway critically promotes postembryonic development in Caenorhabditis elegans. eLife 2, e00429. https://doi.org/10.7554/eLife.00429 PMID:23705068

Downloads

Published

2025-09-22

How to Cite

Aburaide, S., Xiong, P., Wolfson, D., Wangmo, T., Vassallo, A., Smith, D., Shaw, M., Millan, L., Meyer, S., Lee, B., Katasi, D., Juen, E., Hookam, A., Elewa, A., Deleon, Y., Chamberlain, M., Suad, A., & Yaeger, L. (2025). Modeling human phenotypes in the nematode C. elegans during an undergraduate developmental biology course. Midwestern Journal of Undergraduate Sciences, 4(1), 38-47. https://doi.org/10.17161/mjusc.v4i1.24548