The mechanisms of immunopathology underlying B cell depletion therapy-mediated remission and relapse in patients with MuSK MG

Immune mechanisms of MuSK MG




Myasthenia gravis, Muscle-specific tyrosine kinase (MuSK), B cell, Autoantibody, B cell depletion therapy, Rituximab, Plasmablasts, Tolerance, IgG4


The application of reverse translational medicine allows for the understanding of immune pathogenesis via therapeutic intervention. We applied this approach to the MuSK subtype of myasthenia gravis. Treatment with the CD20-specific B cell depletion therapy (BCDT) demonstrated that MuSK MG patients respond remarkably well; the majority invariably reach remission accompanied by a remarkable drop in autoantibody levels. Circulating antibodies are primarily produced by bone marrow resident plasma cells, which do not express CD20. So, how does BCDT diminish MuSK autoantibodies and induce rapid remission? We developed a mechanistic model, which hypothesized that plasmablasts, which are short-lived antibody secreting B cell populations, produce MuSK-specific autoantibodies. Anti-CD20-mediated BCDT is expected to deplete CD20-expressing plasmablasts or CD20 expressing memory cells that supply the plasmablast population. To test this hypothesis, we performed a series of investigations, which were reported over the last seven years and are summarized in this review. First, we isolated plasmablasts from patients and generated human recombinant monoclonal autoantibodies (mAb) which bound MuSK and had pathogenic capacity, demonstrating that MuSK autoantibodies can be produced by this specific cell population. The characterization of the mAbs showed that MuSK autoantibodies can include unique properties including unusually high antigen binding affinity, and an elevated frequency of N-linked glycosylation in their binding domains. Further characterization suggested that MuSK autoantibody-producing cells may form in the early stages of B cell development due to defective tolerance mechanisms. Finally, we sought to determine how these pathogenic B cell clones behave over time. High throughput B cell receptor sequencing was applied to investigate longitudinally collected samples from patients treated with anti-CD20-mediated BCDT. MuSK-specific clonal variants were detected at multiple timepoints spanning more than five years and reemerged after BCDT-induced remission, predating disease relapse by several months. These collective investigations provide a more detailed mechanistic understanding that MuSK MG, the key features of which include production of autoantibodies by circulating plasmablasts that can be targeted by CD20-specific BCDT, and that pathogenic clones can survive BCDT and reemerge prior to manifestation of clinical relapse.


Metrics Loading ...


Download data is not yet available.


Vincent A. Unravelling the pathogenesis of myasthenia gravis. Nature reviews. Immunology. 2002;2:797-804. PMID: 12360217

Gilhus NE. Myasthenia Gravis. The New England journal of medicine. 2016;375:2570-2581. PMID: 28029925

Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, Vincent A. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nature medicine. 2001;7:365-368. PMID: 11231638

Zisimopoulou P, Evangelakou P, Tzartos J, et al. A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis. Journal of autoimmunity. 2014;52:139-145. PMID: 24373505

Higuchi O, Hamuro J, Motomura M, Yamanashi Y. Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Annals of neurology. 2011;69:418-422. PMID: 21387385

Vincent A, Beeson D, Lang B. Molecular targets for autoimmune and genetic disorders of neuromuscular transmission. Eur J Biochem. 2000;267:6717-6728. PMID: 11082182

Koneczny I, Cossins J, Vincent A. The role of muscle-specific tyrosine kinase (MuSK) and mystery of MuSK myasthenia gravis. J Anat. 2013. PMID: 23458718

Jacob S, Viegas S, Leite MI, et al. Presence and pathogenic relevance of antibodies to clustered acetylcholine receptor in ocular and generalized myasthenia gravis. Arch Neurol. 2012;69:994-1001. PMID: 22689047

Lindstrom JM, Engel AG, Seybold ME, Lennon VA, Lambert EH. Pathological mechanisms in experimental autoimmune myasthenia gravis. II. Passive transfer of experimental autoimmune myasthenia gravis in rats with anti-acetylcholine recepotr antibodies. The Journal of experimental medicine. 1976;144:739-753. PMID: 182897

Oda K, Korenaga S, Ito Y. Myasthenia gravis: passive transfer to mice of antibody to human and mouse acetylcholine receptor. Neurology. 1981;31:282-287. PMID: 6259556

Sterz R, Hohlfeld R, Rajki K, et al. Effector mechanisms in myasthenia gravis: end-plate function after passive transfer of IgG, Fab, and F(ab')2 hybrid molecules. Muscle & nerve. 1986;9:306-312. PMID: 2423869

Toyka KV, Brachman DB, Pestronk A, Kao I. Myasthenia gravis: passive transfer from man to mouse. Science (New York, N.Y.). 1975;190:397-399. PMID: 1179220

Modoni A, Mastrorosa A, Spagni G, Evoli A. Cholinergic hyperactivity in patients with myasthenia gravis with MuSK antibodies: A neurophysiological study. Clinical Neurophysiology. 2021;132:1845-1849. PMID: 34147009

Vergoossen DLE, Plomp JJ, Gstöttner C, et al. Functional monovalency amplifies the pathogenicity of anti-MuSK IgG4 in myasthenia gravis. Proceedings of the National Academy of Sciences of the United States of America. 2021;118. PMID: 33753489

Fichtner ML, Jiang R, Bourke A, Nowak RJ, O'Connor KC. Autoimmune Pathology in Myasthenia Gravis Disease Subtypes Is Governed by Divergent Mechanisms of Immunopathology. Front Immunol. 2020;11:776. PMID: 32547535

Yi JS, Guptill JT, Stathopoulos P, Nowak RJ, O'Connor KC. B cells in the pathophysiology of myasthenia gravis. Muscle & nerve. 2018;57:172-184. PMID: 28940642

Diaz-Manera J, Martinez-Hernandez E, Querol L, et al. Long-lasting treatment effect of rituximab in MuSK myasthenia. Neurology. 2012;78:189-193. PMID: 22218276

Krumbholz M, Derfuss T, Hohlfeld R, Meinl E. B cells and antibodies in multiple sclerosis pathogenesis and therapy. Nat Rev Neurol. 2012;8:613-623. PMID: 23045237

Maloney DG, Liles TM, Czerwinski DK, et al. Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma. Blood. 1994;84:2457-2466. PMID: 7522629

Nadler LM, Stashenko P, Hardy R, et al. Serotherapy of a Patient with a Monoclonal Antibody Directed against a Human Lymphoma-associated Antigen1. Cancer research. 1980;40:3147-3154. PMID: 7427932

McLaughlin P, Grillo-López AJ, Link BK, et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. Journal of Clinical Oncology. 1998;16:2825-2833. PMID: 9704735

Hauser SL, Waubant E, Arnold DL, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. The New England journal of medicine. 2008;358:676-688. PMID: 18272891

Edwards JC, Szczepanski L, Szechinski J, et al. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. The New England journal of medicine. 2004;350:2572-2581. PMID: 15201414

Joly P, Maho-Vaillant M, Prost-Squarcioni C, et al. First-line rituximab combined with short-term prednisone versus prednisone alone for the treatment of pemphigus (Ritux 3): a prospective, multicentre, parallel-group, open-label randomised trial. Lancet (London, England). 2017;389:2031-2040. PMID: 28342637

Querol L, Nogales-Gadea G, Rojas-Garcia R, et al. Antibodies to contactin-1 in chronic inflammatory demyelinating polyneuropathy. Annals of neurology. 2012. PMID: 23280477

Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM. The generation of antibody-secreting plasma cells. Nature reviews. Immunology. 2015;15:160-171. PMID: 25698678

Jiang R, Fichtner ML, Hoehn KB, et al. Single-cell repertoire tracing identifies rituximab-resistant B cells during myasthenia gravis relapses. JCI Insight. 2020. PMID: 32573488

Fichtner ML, Hoehn KB, Ford EE, et al. Reemergence of pathogenic, autoantibody-producing B cell clones in myasthenia gravis following B cell depletion therapy. Acta Neuropathologica Communications. 2022;10:154. PMID: 36307868

Stathopoulos P, Kumar A, Nowak RJ, O'Connor KC. Autoantibody-producing plasmablasts after B cell depletion identified in muscle-specific kinase myasthenia gravis. JCI Insight. 2017;2:e94263-e94275. PMID: 28878127

Takata K, Stathopoulos P, Cao M, et al. Characterization of pathogenic monoclonal autoantibodies derived from muscle-specific kinase myasthenia gravis patients. JCI Insight. 2019;4. PMID: 31217355

Janeway C. Immunobiology : the immune system in health and disease. 6th ed. New York: Garland Science; 2005.

Tonegawa S. Somatic generation of antibody diversity. Nature. 1983;302:575-581. PMID: 6300689

Pillai S, Mattoo H, Cariappa A. B cells and autoimmunity. Current opinion in immunology. 2011;23:721-731. PMID: 22119110

Nemazee D. Mechanisms of central tolerance for B cells. Nature reviews. Immunology. 2017;17:281-294. PMID: 28368006

Meffre E, O'Connor KC. Impaired B-cell tolerance checkpoints promote the development of autoimmune diseases and pathogenic autoantibodies. Immunological reviews. 2019;292:90-101. PMID: 31721234

Lee JY, Stathopoulos P, Gupta S, et al. Compromised fidelity of B-cell tolerance checkpoints in AChR and MuSK myasthenia gravis. Ann Clin Transl Neurol. 2016;3:443-454. PMID: 27547772

Huijbers MG, Vergoossen DL, Fillie-Grijpma YE, et al. MuSK myasthenia gravis monoclonal antibodies: Valency dictates pathogenicity. Neurology(R) neuroimmunology & neuroinflammation. 2019;6:e547. PMID: 30882021

Cotzomi E, Stathopoulos P, Lee CS, et al. Early B cell tolerance defects in neuromyelitis optica favour anti-AQP4 autoantibody production. Brain. 2019;142:1598-1615. PMID: 31056665

Fichtner ML, Vieni C, Redler RL, et al. Affinity maturation is required for pathogenic monovalent IgG4 autoantibody development in myasthenia gravis. Journal of Experimental Medicine. 2020;217. PMID: 32820331

Di Zenzo G, Di Lullo G, Corti D, et al. Pemphigus autoantibodies generated through somatic mutations target the desmoglein-3 cis-interface. The Journal of clinical investigation. 2012;122:3781-3790. PMID: 22996451

Wellmann U, Letz M, Herrmann M, Angermuller S, Kalden JR, Winkler TH. The evolution of human anti-double-stranded DNA autoantibodies. Proceedings of the National Academy of Sciences of the United States of America. 2005;102:9258-9263. PMID: 15968001

Mietzner B, Tsuiji M, Scheid J, et al. Autoreactive IgG memory antibodies in patients with systemic lupus erythematosus arise from nonreactive and polyreactive precursors. Proceedings of the National Academy of Sciences of the United States of America. 2008;105:9727-9732. PMID: 18621685

Shi J, Darrah E, Sims GP, et al. Affinity maturation shapes the function of agonistic antibodies to peptidylarginine deiminase type 4 in rheumatoid arthritis. Annals of the rheumatic diseases. 2018;77:141-148. PMID: 29070531

Cho A, Caldara AL, Ran NA, et al. Single-Cell Analysis Suggests that Ongoing Affinity Maturation Drives the Emergence of Pemphigus Vulgaris Autoimmune Disease. Cell Rep. 2019;28:909-922 e906. PMID: 31340153

Wang Q, Zhang B, Xiong WC, Mei L. MuSK signaling at the neuromuscular junction. Journal of molecular neuroscience : MN. 2006;30:223-226. PMID: 17192681

Zong Y, Jin R. Structural mechanisms of the agrin-LRP4-MuSK signaling pathway in neuromuscular junction differentiation. Cellular and molecular life sciences : CMLS. 2013;70:3077-3088. PMID: 23178848

Oury J, Zhang W, Leloup N, et al. Mechanism of disease and therapeutic rescue of Dok7 congenital myasthenia. Nature. 2021;595:404-408. PMID: 34163073

Burden SJ. The formation of neuromuscular synapses. Genes & development. 1998;12:133-148. PMID: 9436975

Zhang W, Coldefy AS, Hubbard SR, Burden SJ. Agrin binds to the N-terminal region of Lrp4 protein and stimulates association between Lrp4 and the first immunoglobulin-like domain in muscle-specific kinase (MuSK). J Biol Chem. 2011;286:40624-40630. PMID: 21969364

Huijbers MG, Zhang W, Klooster R, et al. MuSK IgG4 autoantibodies cause myasthenia gravis by inhibiting binding between MuSK and Lrp4. Proceedings of the National Academy of Sciences of the United States of America. 2013;110:20783-20788. PMID: 24297891

Klooster R, Plomp JJ, Huijbers MG, et al. Muscle-specific kinase myasthenia gravis IgG4 autoantibodies cause severe neuromuscular junction dysfunction in mice. Brain. 2012;135:1081-1101. PMID: 22396395

Plomp JJ, Huijbers MG, van der Maarel SM, Verschuuren JJ. Pathogenic IgG4 subclass autoantibodies in MuSK myasthenia gravis. Annals of the New York Academy of Sciences. 2012;1275:114-122. PMID: 23278586

Cole RN, Reddel SW, Gervasio OL, Phillips WD. Anti-MuSK patient antibodies disrupt the mouse neuromuscular junction. Annals of neurology. 2008;63:782-789. PMID: 18384168

Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520. PMID: 25368619

van der Neut Kolfschoten M, Schuurman J, Losen M, et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science (New York, N.Y.). 2007;317:1554-1557. PMID: 17872445

Niks EH, van Leeuwen Y, Leite MI, et al. Clinical fluctuations in MuSK myasthenia gravis are related to antigen-specific IgG4 instead of IgG1. Journal of neuroimmunology. 2008;195:151-156. PMID: 18384886

Ohta K, Shigemoto K, Fujinami A, Maruyama N, Konishi T, Ohta M. Clinical and experimental features of MuSK antibody positive MG in Japan. European journal of neurology. 2007;14:1029-1034. PMID: 17718696

McConville J, Farrugia ME, Beeson D, et al. Detection and characterization of MuSK antibodies in seronegative myasthenia gravis. Annals of neurology. 2004;55:580-584. PMID: 15048899

Koneczny I, Stevens JA, De Rosa A, et al. IgG4 autoantibodies against muscle-specific kinase undergo Fab-arm exchange in myasthenia gravis patients. Journal of autoimmunity. 2017;77:104-115. PMID: 27965060

Hubbard SR, Gnanasambandan K. Structure and activation of MuSK, a receptor tyrosine kinase central to neuromuscular junction formation. Biochimica et biophysica acta. 2013;1834:2166-2169. PMID: 23467009

Till JH, Becerra M, Watty A, et al. Crystal Structure of the MuSK Tyrosine Kinase: Insights into Receptor Autoregulation. Structure. 2002;10:1187-1196. PMID: 12220490

Okada K, Inoue A, Okada M, et al. The muscle protein Dok-7 is essential for neuromuscular synaptogenesis. Science (New York, N.Y.). 2006;312:1802-1805. PMID: 16794080

Rubelt F, Busse CE, Bukhari SAC, et al. Adaptive Immune Receptor Repertoire Community recommendations for sharing immune-repertoire sequencing data. Nat Immunol. 2017;18:1274-1278. PMID: 29144493

Vander Heiden JA, Stathopoulos P, Zhou JQ, et al. Dysregulation of B Cell Repertoire Formation in Myasthenia Gravis Patients Revealed through Deep Sequencing. J Immunol. 2017;198:1460-1473. PMID: 28087666

Mandel-Brehm C, Fichtner ML, Jiang R, et al. Elevated N-Linked Glycosylation of IgG V Regions in Myasthenia Gravis Disease Subtypes. The Journal of Immunology. 2021:ji2100225. PMID: 34544801

Kissel T, Ge C, Hafkenscheid L, et al. Surface Ig variable domain glycosylation affects autoantigen binding and acts as threshold for human autoreactive B cell activation. Science advances. 2022;8:eabm1759. PMID: 35138894

Querol L, Rojas-García R, Diaz-Manera J, et al. Rituximab in treatment-resistant CIDP with antibodies against paranodal proteins. Neurology(R) neuroimmunology & neuroinflammation. 2015;2:e149. PMID: 26401517

Landon-Cardinal O, Friedman D, Guiguet M, et al. Efficacy of Rituximab in Refractory Generalized anti-AChR Myasthenia Gravis. Journal of neuromuscular diseases. 2018;5:241-249. PMID: 29865089

Bastakoti S, Kunwar S, Poudel S, et al. Rituximab in the Management of Refractory Myasthenia Gravis and Variability of Its Efficacy in Anti-MuSK Positive and Anti-AChR Positive Myasthenia Gravis. Cureus. 2021;13:e19416. PMID: 34909332

Piehl F, Eriksson-Dufva A, Budzianowska A, et al. Efficacy and Safety of Rituximab for New-Onset Generalized Myasthenia Gravis: The RINOMAX Randomized Clinical Trial. JAMA Neurol. 2022;79:1105-1112. PMID: 36121672

Damato V, Theorell J, Al-Diwani A, et al. Rituximab abrogates aquaporin-4-specific germinal center activity in patients with neuromyelitis optica spectrum disorders. Proceedings of the National Academy of Sciences. 2022;119:e2121804119. PMID: 35666871

Nakou M, Katsikas G, Sidiropoulos P, et al. Rituximab therapy reduces activated B cells in both the peripheral blood and bone marrow of patients with rheumatoid arthritis: depletion of memory B cells correlates with clinical response. Arthritis Research & Therapy. 2009;11:R131. PMID: 19715572

Parameswaran P, Liu Y, Roskin KM, et al. Convergent antibody signatures in human dengue. Cell host & microbe. 2013;13:691-700. PMID: 23768493

Jackson KJ, Liu Y, Roskin KM, et al. Human responses to influenza vaccination show seroconversion signatures and convergent antibody rearrangements. Cell host & microbe. 2014;16:105-114. PMID: 24981332

Triplett JD, Hardy TA, Riminton DS, Chu SYK, Reddel SW. Association between musk antibody concentrations and the myasthenia gravis composite score in 3 patients: A marker of relapse? Muscle & nerve. 2019;60:307-311. PMID: 31177576






MGFA International Conference Proceedings

How to Cite

OConnor, K., & Fichtner, M. (2023). The mechanisms of immunopathology underlying B cell depletion therapy-mediated remission and relapse in patients with MuSK MG: Immune mechanisms of MuSK MG. RRNMF Neuromuscular Journal, 4(3).