A Promising Antigen-specific Immunotherapy for the Treatment of Myasthenia Gravis

Authors

  • Eleni Ntoukaki Department of Immunology, Hellenic Pasteur Institute, Athens, Greece.
  • Vasiliki Baltatzidou Department of Immunology, Hellenic Pasteur Institute, Athens, Greece.
  • Konstantinos Lazaridis Department of Immunology, Hellenic Pasteur Institute, Athens, Greece.

DOI:

https://doi.org/10.17161/rrnmf.v4i3.19494

Keywords:

autoimmune disease, myasthenia gravis, acetylcholine receptor, antigen specific immune tolerance, intravenous tolerance

Abstract

Myasthenia gravis (MG) is a T cell-dependent, antibody-mediated, autoimmune disorder with well-established antigenic targets at the neuromuscular junction. MG autoantibodies mainly target the nicotinic acetylcholine receptor (AChR) and especially epitopes located in the extracellular domain of the α1 subunit (α1-ECD). Today, most therapeutic regimens for MG are non-specific and not curative, requiring chronic treatments that are associated with significant side effects. We aim to develop an antigen-specific therapeutic approach, based on reestablishing tolerance towards the AChR, the dominant autoantigen in MG. To this end, we used a soluble mutated form of the human α1-ECD, which incorporates a major fraction of MG autoreactive T cell epitopes and examined the therapeutic efficiency of intravenous administration in a rat experimental autoimmune MG model. We found that repeated intravenous administration of α1-ECD for up to 12 days led to a robust amelioration of disease symptoms in a dose and time-dependent manner. The observed therapeutic effect of α1-ECD was significantly better than the effect of two current mainstay drugs for MG treatment. There were no signs of toxicity in α1-ECD-treated animals and further studies are underway to fully elucidate the immunological mechanism underlying the treatment effect. Taken together, our preclinical data strongly suggest that intravenous administration of α1-ECD may represent an efficacious and safe strategy to treat MG and thus α1-ECD represents a new drug candidate for clinical application in MG. 

Metrics

Metrics Loading ...

Downloads

Download data is not yet available.

References

Gilhus NE, Tzartos S, Evoli A, Palace J, Burns TM, Verschuuren JJGM. Myasthenia gravis. Nat Rev Dis Primers. 2019 May 2;5(1):30. doi: 10.1038/s41572-019-0079-y. PMID: 31048702.

Huijbers MG, Marx A, Plomp JJ, Le Panse R, Phillips WD. Advances in the understanding of disease mechanisms of autoimmune neuromuscular junction disorders. Lancet Neurol. 2022 Feb;21(2):163-175. doi: 10.1016/S1474-4422(21)00357-4. PMID: 35065039.

Sine SM. End-plate acetylcholine receptor: structure, mechanism, pharmacology, and disease. Physiol Rev. 2012 Jul;92(3):1189-234. doi: 10.1152/physrev.00015.2011. PMID: 22811427; PMCID: PMC3489064.

Noridomi K, Watanabe G, Hansen MN, Han GW, Chen L. Structural insights into the molecular mechanisms of myasthenia gravis and their therapeutic implications. Elife. 2017 Apr 25;6:e23043. doi: 10.7554/eLife.23043. PMID: 28440223; PMCID: PMC5404922.

Tzartos SJ, Barkas T, Cung MT, Mamalaki A, Marraud M, Orlewski P, et al. Anatomy of the antigenic structure of a large membrane autoantigen, the muscle-type nicotinic acetylcholine receptor. Immunol Rev. 1998 Jun;163:89-120. doi: 10.1111/j.1600-065x.1998.tb01190.x. PMID: 9700504.

Tzartos SJ, Kokla A, Walgrave SL, Conti-Tronconi BM. Localization of the main immunogenic region of human muscle acetylcholine receptor to residues 67-76 of the alpha subunit. Proc Natl Acad Sci U S A. 1988 May;85(9):2899-903. doi: 10.1073/pnas.85.9.2899. PMID: 3362855; PMCID: PMC280110.

Tzartos SJ, Lindstrom JM. Monoclonal antibodies used to probe acetylcholine receptor structure: localization of the main immunogenic region and detection of similarities between subunits. Proc Natl Acad Sci U S A. 1980 Feb;77(2):755-9. doi: 10.1073/pnas.77.2.755. PMID: 6153804; PMCID: PMC348359.

Brocke S, Brautbar C, Steinman L, Abramsky O, Rothbard J, Neumann D, et al. In vitro proliferative responses and antibody titers specific to human acetylcholine receptor synthetic peptides in patients with myasthenia gravis and relation to HLA class II genes. J Clin Invest. 1988 Dec;82(6):1894-900. doi: 10.1172/JCI113807. PMID: 2461962; PMCID: PMC442769.

Balandina A, Lécart S, Dartevelle P, Saoudi A, Berrih-Aknin S. Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood. 2005 Jan 15;105(2):735-41. doi: 10.1182/blood-2003-11-3900. Epub 2004 Sep 28. PMID: 15454488; PMCID: PMC1847365.

Protti MP, Manfredi AA, Straub C, Howard JF Jr, Conti-Tronconi BM. Immunodominant regions for T helper-cell sensitization on the human nicotinic receptor alpha subunit in myasthenia gravis. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7792-6. doi: 10.1073/pnas.87.19.7792. PMID: 2145582; PMCID: PMC54834.

Silvestri NJ, Wolfe GI. Treatment-refractory myasthenia gravis. J Clin Neuromuscul Dis. 2014 Jun;15(4):167-78. doi: 10.1097/CND.0000000000000034. PMID: 24872217.

Mantegazza R, Cavalcante P. Diagnosis and treatment of myasthenia gravis. Curr Opin Rheumatol. 2019 Nov;31(6):623-633. doi: 10.1097/BOR.0000000000000647. PMID: 31385879.

Behin A, Le Panse R. New Pathways and Therapeutic Targets in Autoimmune Myasthenia Gravis. J Neuromuscul Dis. 2018;5(3):265-277. doi: 10.3233/JND-170294. PMID: 30010142; PMCID: PMC6087460.

Wolfe GI, Kaminski HJ, Aban IB, Minisman G, Kuo HC, Marx A, et al.; MGTX Study Group. Randomized Trial of Thymectomy in Myasthenia Gravis. N Engl J Med. 2016 Aug 11;375(6):511-22. doi: 10.1056/NEJMoa1602489. Erratum in: N Engl J Med. 2017 May 25;376(21):2097. [Dosage error in article text]. PMID: 27509100; PMCID: PMC5189669.

Lazaridis K, Tzartos SJ. Myasthenia Gravis: Autoantibody Specificities and Their Role in MG Management. Front Neurol. 2020 Nov 30;11:596981. doi: 10.3389/fneur.2020.596981. PMID: 33329350; PMCID: PMC7734299.

Menon D, Barnett C, Bril V. Novel Treatments in Myasthenia Gravis. Front Neurol. 2020 Jun 30;11:538. doi: 10.3389/fneur.2020.00538. PMID: 32714266; PMCID: PMC7344308.

Serra P, Santamaria P. Antigen-specific therapeutic approaches for autoimmunity. Nat Biotechnol. 2019 Mar;37(3):238-251. doi: 10.1038/s41587-019-0015-4. Epub 2019 Feb 25. PMID: 30804535.

Im SH, Barchan D, Fuchs S, Souroujon MC. Mechanism of nasal tolerance induced by a recombinant fragment of acetylcholine receptor for treatment of experimental myasthenia gravis. J Neuroimmunol. 2000 Nov 1;111(1-2):161-8. doi: 10.1016/s0165-5728(00)00395-7. PMID: 11063834.

Im SH, Barchan D, Fuchs S, Souroujon MC. Suppression of ongoing experimental myasthenia by oral treatment with an acetylcholine receptor recombinant fragment. J Clin Invest. 1999 Dec;104(12):1723-30. doi: 10.1172/JCI8121. PMID: 10606626; PMCID: PMC409886.

Shi FD, Bai XF, Li HL, Huang YM, Van der Meide PH, Link H. Nasal tolerance in experimental autoimmune myasthenia gravis (EAMG): induction of protective tolerance in primed animals. Clin Exp Immunol. 1998 Mar;111(3):506-12. doi: 10.1046/j.1365-2249.1998.00521.x. PMID: 9528890; PMCID: PMC1904894.

Baggi F, Andreetta F, Caspani E, Milani M, Longhi R, Mantegazza R, et al. Oral administration of an immunodominant T-cell epitope downregulates Th1/Th2 cytokines and prevents experimental myasthenia gravis. J Clin Invest. 1999 Nov;104(9):1287-95. doi: 10.1172/JCI7121. PMID: 10545527; PMCID: PMC409818.

Faria AM, Weiner HL. Oral tolerance: therapeutic implications for autoimmune diseases. Clin Dev Immunol. 2006 Jun-Dec;13(2-4):143-57. doi: 10.1080/17402520600876804. PMID: 17162357; PMCID: PMC2270752.

Im SH, Barchan D, Souroujon MC, Fuchs S. Role of tolerogen conformation in induction of oral tolerance in experimental autoimmune myasthenia gravis. J Immunol. 2000 Oct 1;165(7):3599-605. doi: 10.4049/jimmunol.165.7.3599. PMID: 11034361.

Karachunski PI, Ostlie NS, Okita DK, Conti-Fine BM. Prevention of experimental myasthenia gravis by nasal administration of synthetic acetylcholine receptor T epitope sequences. J Clin Invest. 1997 Dec 15;100(12):3027-35. doi: 10.1172/JCI119857. PMID: 9399949; PMCID: PMC508515.

Zhang GX, Shi FD, Zhu J, Xiao BG, Levi M, Wahren B, et al. Synthetic peptides fail to induce nasal tolerance to experimental autoimmune myasthenia gravis. J Neuroimmunol. 1998 May 1;85(1):96-101. doi: 10.1016/s0165-5728(97)00243-9. PMID: 9627002.

Zoda TE, Brandon K, Krolick KA. Neonatal tolerance to an immunodominant T cell reactivity does not confer resistance to EAMG induction in Lewis rats. J Neuroimmunol. 1995 Mar;57(1-2):35-44. doi: 10.1016/0165-5728(94)00159-l. PMID: 7535790.

Kaushansky N, Kerlero de Rosbo N, Zilkha-Falb R, Yosef-Hemo R, Cohen L, Ben-Nun A. 'Multi-epitope-targeted' immune-specific therapy for a multiple sclerosis-like disease via engineered multi-epitope protein is superior to peptides. PLoS One. 2011;6(11):e27860. doi: 10.1371/journal.pone.0027860. Epub 2011 Nov 29. PMID: 22140475; PMCID: PMC3226621.

Chataway J, Martin K, Barrell K, Sharrack B, Stolt P, Wraith DC; ATX-MS1467 Study Group. Effects of ATX-MS-1467 immunotherapy over 16 weeks in relapsing multiple sclerosis. Neurology. 2018 Mar 13;90(11):e955-e962. doi: 10.1212/WNL.0000000000005118. Epub 2018 Feb 21. PMID: 29467307.

Pearce SHS, Dayan C, Wraith DC, Barrell K, Olive N, Jansson L, et al. Antigen-Specific Immunotherapy with Thyrotropin Receptor Peptides in Graves' Hyperthyroidism: A Phase I Study. Thyroid. 2019 Jul;29(7):1003-1011. doi: 10.1089/thy.2019.0036. Epub 2019 Jun 13. PMID: 31194638; PMCID: PMC6648194.

Kelly CP, Murray JA, Leffler DA, Getts DR, Bledsoe AC, Smithson G, et al; TAK-101 Study Group. TAK-101 Nanoparticles Induce Gluten-Specific Tolerance in Celiac Disease: A Randomized, Double-Blind, Placebo-Controlled Study. Gastroenterology. 2021 Jul;161(1):66-80.e8. doi: 10.1053/j.gastro.2021.03.014. Epub 2021 Mar 17. PMID: 33722583; PMCID: PMC9053078.

Lazaridis K, Fernandez-Santoscoy M, Baltatzidou V, Andersson JO, Christison R, Grünberg J, et al. A Recombinant Acetylcholine Receptor α1 Subunit Extracellular Domain Is a Promising New Drug Candidate for Treatment Of Myasthenia Gravis. Front Immunol. 2022 Jun 3;13:809106. doi: 10.3389/fimmu.2022.809106. PMID: 35720339; PMCID: PMC9204200.

Lazaridis K, Zisimopoulou P, Giastas P, Bitzopoulou K, Evangelakou P, Sideri A, et al. Expression of human AChR extracellular domain mutants with improved characteristics. Int J Biol Macromol. 2014 Feb;63:210-7. doi: 10.1016/j.ijbiomac.2013.11.003. Epub 2013 Nov 15. PMID: 24246999.

Lazaridis K, Evaggelakou P, Bentenidi E, Sideri A, Grapsa E, Tzartos SJ. Specific adsorbents for myasthenia gravis autoantibodies using mutants of the muscle nicotinic acetylcholine receptor extracellular domains. J Neuroimmunol. 2015 Jan 15;278:19-25. doi: 10.1016/j.jneuroim.2014.12.001. Epub 2014 Dec 3. PMID: 25595248.

Losen M, Martinez-Martinez P, Molenaar PC, Lazaridis K, Tzartos S, Brenner T, et al. Standardization of the experimental autoimmune myasthenia gravis (EAMG) model by immunization of rats with Torpedo californica acetylcholine receptors--Recommendations for methods and experimental designs. Exp Neurol. 2015 Aug;270:18-28. doi: 10.1016/j.expneurol.2015.03.010. Epub 2015 Mar 18. PMID: 25796590; PMCID: PMC4466156.

Lazaridis K, Baltatzidi V, Trakas N, Koutroumpi E, Karandreas N, Tzartos SJ. Characterization of a reproducible rat EAMG model induced with various human acetylcholine receptor domains. J Neuroimmunol. 2017 Feb 15;303:13-21. doi: 10.1016/j.jneuroim.2016.12.011. Epub 2016 Dec 21. PMID: 28038891.

Lazaridis K, Dalianoudis I, Baltatzidi V, Tzartos SJ. Specific removal of autoantibodies by extracorporeal immunoadsorption ameliorates experimental autoimmune myasthenia gravis. J Neuroimmunol. 2017 Nov 15;312:24-30. doi: 10.1016/j.jneuroim.2017.09.001. Epub 2017 Sep 6. PMID: 28912035.

Kontermann RE. Half-life extended biotherapeutics. Expert Opin Biol Ther. 2016 Jul;16(7):903-15. doi: 10.1517/14712598.2016.1165661. Epub 2016 Apr 18. Erratum in: Expert Opin Biol Ther. 2016 Sep;16(9):1179. PMID: 26967759.

Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016 Apr 1;99(Pt A):28-51. doi: 10.1016/j.addr.2015.09.012. Epub 2015 Oct 9. PMID: 26456916; PMCID: PMC4798869.

Doherty DG. Immunity, tolerance and autoimmunity in the liver: A comprehensive review. J Autoimmun. 2016 Jan;66:60-75. doi: 10.1016/j.jaut.2015.08.020. Epub 2015 Sep 7. PMID: 26358406.

Lukacs-Kornek V, Burgdorf S, Diehl L, Specht S, Kornek M, Kurts C. The kidney-renal lymph node-system contributes to cross-tolerance against innocuous circulating antigen. J Immunol. 2008 Jan 15;180(2):706-15. doi: 10.4049/jimmunol.180.2.706. PMID: 18178808.

Lewis SM, Williams A, Eisenbarth SC. Structure and function of the immune system in the spleen. Sci Immunol. 2019 Mar 1;4(33):eaau6085. doi: 10.1126/sciimmunol.aau6085. PMID: 30824527; PMCID: PMC6495537.

Lindstrom JM, Engel AG, Seybold ME, Lennon VA, Lambert EH. Pathological mechanisms in experimental autoimmune myasthenia gravis. II. Passive transfer of experimental autoimmune myasthenia gravis in rats with anti-acetylcholine receptor antibodies. J Exp Med. 1976 Sep 1;144(3):739-53. doi: 10.1084/jem.144.3.739. PMID: 182897; PMCID: PMC2190413.

Newsom-Davis J, Wilson SG, Vincent A, Ward CD. Long-term effects of repeated plasma exchange in myasthenia gravis. Lancet. 1979 Mar 3;1(8114):464-8. doi: 10.1016/s0140-6736(79)90823-7. PMID: 85055.

Gomez AM, Van Den Broeck J, Vrolix K, Janssen SP, Lemmens MA, Van Der Esch E, et al. Antibody effector mechanisms in myasthenia gravis-pathogenesis at the neuromuscular junction. Autoimmunity. 2010 Aug;43(5-6):353-70. doi: 10.3109/08916930903555943. PMID: 20380584.

Howard FM Jr, Lennon VA, Finley J, Matsumoto J, Elveback LR. Clinical correlations of antibodies that bind, block, or modulate human acetylcholine receptors in myasthenia gravis. Ann N Y Acad Sci. 1987;505:526-38. doi: 10.1111/j.1749-6632.1987.tb51321.x. PMID: 3479935.

Drachman DB, Okumura S, Adams RN, McIntosh KR. Oral tolerance in myasthenia gravis. Ann N Y Acad Sci. 1996 Feb 13;778:258-72. doi: 10.1111/j.1749-6632.1996.tb21134.x. PMID: 8610979.

Skeie GO, Apostolski S, Evoli A, Gilhus NE, Illa I, Harms L, et al; European Federation of Neurological Societies. Guidelines for treatment of autoimmune neuromuscular transmission disorders. Eur J Neurol. 2010 Jul;17(7):893-902. doi: 10.1111/j.1468-1331.2010.03019.x. Epub 2010 Apr 12. PMID: 20402760.

Liu L, Garcia AM, Santoro H, Zhang Y, McDonnell K, Dumont J, et al. Amelioration of experimental autoimmune myasthenia gravis in rats by neonatal FcR blockade. J Immunol. 2007 Apr 15;178(8):5390-8. doi: 10.4049/jimmunol.178.8.5390. PMID: 17404325.

Downloads

Published

2023-08-29

Issue

Section

MGFA International Conference Proceedings

How to Cite

Ntoukaki , E., Baltatzidou , V., & Lazaridis, K. (2023). A Promising Antigen-specific Immunotherapy for the Treatment of Myasthenia Gravis. RRNMF Neuromuscular Journal, 4(3). https://doi.org/10.17161/rrnmf.v4i3.19494