Near Fiber Electromyography in the Diagnosis of Myasthenia Gravis

NFEMG in MG

Authors

  • Ross Mandeville MGB
  • Adam Patterson Beth Israel Deaconess Medical Center
  • Justin Luk Massachusetts General Hospital
  • Art Eleanore
  • Oscar Garnés‐Camarena
  • Dan Stashuk

DOI:

https://doi.org/10.17161/rrnmf.v6i1.21795

Keywords:

Near Fiber EMG, Quantitative Electromyography, Neuromuscular Junction Instability, Jitter Estimation, Single Fiber EMG, Motor Unit Instability, Myasthenia Gravis

Abstract

Background:

Near fiber EMG (NFEMG) focuses on activity of muscle fibers close to the electrode offers the ability to semi-automatically assess neuromuscular junction instability in a manner conceptually similar to single fiber EMG (SFEMG). The objective of this retrospective study was to compare the accuracy of NFEMG with SFEMG in diagnosing myasthenia gravis (MG).

Methods:

NFEMG was blindly applied to recordings from 50 patients SFEMG-tested at BIDMC in the prior 18 months, 12 of whom were diagnosed as having MG. Excluding the myopathic and neurogenic patients, NFEMG and SFEMG results were compared to the final clinical diagnosis using cross-validation that involved 10 randomly selected training sets and their corresponding testing sets.

Results:

In patients free of myopathy or neuropathy, NFEMG sensitivity was 100% while specificity ranged from 89% to 95% (mean of 90%). When testing on the entire cohort of patients free of other neuromuscular conditions, NFEMG sensitivity and specificity were 100% and 94%, respectively, while SFEMG sensitivity and specificity were 94% and 97%, respectively.

Conclusion:

NFEMG performs well in diagnosing MG, but prospective studies are needed. Patients with weakness for whom the differential diagnosis includes seronegative MG is substantial; an efficient way to address this is important. The ease of application and minimal training requirement suggest NFEMG could be an efficient screen prior to SFEMG referral or an alternative diagnostic test when SFEMG is unavailable, potentially addressing a significant healthcare disparity for the large population of patients with weakness that may be caused by seronegative MG.

Metrics

File downloads
15

Downloads

References

Melzer N, Ruck T, Fuhr P, et al. Clinical features, pathogenesis, and treatment of myasthenia gravis: a supplement to the Guidelines of the German Neurological Society. J Neurol. 2016;263(8):1473-1494. doi:10.1007/s00415-016-8045-z

Carr AS, Cardwell CR, McCarron PO, McConville J. A systematic review of population based epidemiological studies in Myasthenia Gravis. BMC neurology. 2010;10:1-9.

Dewilde S, Philips G, Paci S, et al. Patient-reported burden of myasthenia gravis: baseline results of the international prospective, observational, longitudinal real-world digital study MyRealWorld-MG. BMJ Open. 2023;13(1):e066445. doi:10.1136/bmjopen-2022-066445

Selvan VA. Single-fiber EMG: A review. Annals of Indian Academy of Neurology. 2011;14(1):64. doi:10.4103/0972-2327.78058

Lazaridis K, Tzartos SJ. Autoantibody Specificities in Myasthenia Gravis; Implications for Improved Diagnostics and Therapeutics. Front Immunol. 2020;11:212. doi:10.3389/fimmu.2020.00212

Valls J. Single Fiber EMG, third ed., Erik V. Stålberg, Joze Trontelj, Donald B. Sanders. Edshagen Publishing House, Fiskebäkskil, Sweden (2010). ISBN: 978-91-633-6509-6. Clinical Neurophysiology. Published online December 31, 2011. doi:10.1016/j.clinph.2011.05.022

Chan KH, Lachance DH, Harper CM, Lennon VA. Frequency of seronegativity in adult-acquired generalized myasthenia gravis. Muscle Nerve. 2007;36(5):651-658. doi:10.1002/mus.20854

Al-Asmi A, Nandhagopal R, Jacob PC, Gujjar A. Misdiagnosis of Myasthenia Gravis and Subsequent Clinical Implication. Sultan Qaboos Univ Med J. 2012;12(1):103-108.

Harrison P, Barton J, Winkel A. Chronic mimics of myasthenia gravis: a retrospective case series. Neuromuscular Disorders. 2023;33(3):250-256. doi:10.1016/j.nmd.2023.01.006

Andrapalliyal N, Claytor B, Li Y. Incidence and causes of overdiagnosis of myasthenia gravis. Muscle and Nerve. 2023;67(6):464-468. doi:10.1002/mus.27774

Gilhus NE, Tzartos S, Evoli A, Palace J, Burns TM, Verschuuren JJGM. Myasthenia gravis. Nat Rev Dis Primers. 2019;5(1):30. doi:10.1038/s41572-019-0079-y

Farmakidis C, Pasnoor M, Dimachkie MM, Barohn RJ. Treatment of Myasthenia Gravis. Neurologic Clinics. 2018;36(2):311-337. doi:10.1016/j.ncl.2018.01.011

Khoo A, Hay Mar H, Borghi MV, Catania S. Electrophysiologic evaluation of myasthenia gravis and its mimics: real-world experience with single-fiber electromyography. Hospital Practice. 2022;50(5):373-378. doi:10.1080/21548331.2022.2125706

Stålberg E. Single fiber electromyography for motor unit study in man. In: Shahani, Manik, ed. Motor System: Neurophysiology and Muscle Mechanisms. Elsevier Science Ltd; 1976.

Sanders DB, Arimura K, Cui L, et al. Guidelines for single fiber EMG. Clinical Neurophysiology. 2019;130(8):1417-1439. doi:10.1016/j.clinph.2019.04.005

Nadeem AS, AL-Salmi KS, AL-Salti AM. The Utility of Concentric Needle Single Fiber Electromyography in Diagnosing Myasthenia Gravis. OAJNN. 2021;13(5):044-056. doi:10.19080/OAJNN.2021.15.555907

Cherian A, Baheti NN, Iype T. Electrophysiological study in neuromuscular junction disorders. Annals of Indian Academy of Neurology. 2013;16(1):34. doi:10.4103/0972-2327.107690

Mandeville R, Patterson A, Garnés-Camarena O, Stashuk D. Near Fiber Segment Jitter in the Diagnosis of Myasthenia Gravis. In: MGFA Scientific Session at AANEM Annual Meeting. ; 2023.

Garnés-Camarena O, Mandeville R, Stashuk D. Comparison of near fiber segment jitter and single fiber pair jitter values in myasthenia gravis. In: MGFA Scientific Session at AANEM Annual Meeting. ; 2023.

Piasecki M, Garnés-Camarena O, Stashuk DW. Near-fiber electromyography. Clinical Neurophysiology. 2021;132(5):1089-1104.

Stålberg E, Sanders DB, Ali S, et al. Reference values for jitter recorded by concentric needle electrodes in healthy controls: A multicenter study. Muscle & nerve. 2016;53(3):351-362.

Lee I, Sanders DB, Nandedkar SD, Kazamel M. Single-institutional reference values for concentric needle jitter analysis using the extrapolated reference values procedure: Comparison to published reference values. Muscle Nerve. 2021;63(1):113-116. doi:10.1002/mus.27092

Doherty TJ, Stashuk DW. Decomposition-based quantitative electromyography: Methods and initial normative data in five muscles. Muscle Nerve. 2003;28(2):204-211. doi:10.1002/mus.10427

Stashuk DW. Detecting single fiber contributions to motor unit action potentials. Muscle Nerve. 1999;22(2):218-229. doi:10.1002/(SICI)1097-4598(199902)22:2<218::AID-MUS10>3.0.CO;2-S

Benatar M, Hammad M, Doss-Riney H. Concentric-needle single-fiber electromyography for the diagnosis of myasthenia gravis. Muscle Nerve. 2006;34(2):163-168. doi:10.1002/mus.20568

Kokubun N, Sonoo M, Imai T, et al. Reference values for voluntary and stimulated single-fibre EMG using concentric needle electrodes: A multicentre prospective study. Clinical Neurophysiology. 2012;123(3):613-620. doi:10.1016/j.clinph.2011.07.044

Bromberg MB, Scott DM. Single fiber EMG reference values: reformatted in tabular form. Published online 1994.

Malanda A, Stashuk DW, Navallas J, et al. Automatic jitter measurement in needle-detected motor unit potential trains. Comput Biol Med. 2022;149:105973. doi:10.1016/j.compbiomed.2022.105973

Morren JA, Levin KH, Shields RW. Diagnostic Accuracy of Single Fiber Electromyography for Myasthenia Gravis in Patients Followed Longitudinally: Journal of Clinical Neurophysiology. 2016;33(5):469-474. doi:10.1097/WNP.0000000000000285

Gilchrist JM. Single fiber EMG reference values: A collaborative effort. Muscle Nerve. 1992;15(2):151-161. doi:10.1002/mus.880150205

Sarrigiannis PG, Kennett RP, Read S, Farrugia ME. Single-fiber EMG with a concentric needle electrode: Validation in myasthenia gravis. Muscle & Nerve. 2006;33(1):61-65. doi:10.1002/mus.20435

Kouyoumdjian JA, Stålberg EV. Reference jitter values for concentric needle electrodes in voluntarily activated extensor digitorum communis and orbicularis oculi muscles. Muscle & Nerve. 2008;37(6):694-699. doi:10.1002/mus.21043

C.N. Machado F, A. Kouyoumdjian J, E. Marchiori P. Diagnostic accuracy of concentric needle jitter in myasthenia: Prospective study: CNEMG Jitter in MG. Muscle Nerve. 2017;55(2):190-194. doi:10.1002/mus.25229

Stålberg EV, Sanders DB. Jitter recordings with concentric needle electrodes. Muscle & Nerve. 2009;40(3):331-339. doi:10.1002/mus.21424

Kouyoumdjian JA, Paiva GP, Stålberg E. Concentric Needle Jitter in 97 Myasthenia Gravis Patients. Front Neurol. 2020;11:600680. doi:10.3389/fneur.2020.600680

Farrugia ME, Weir AI, Cleary M, Cooper S, Metcalfe R, Mallik A. Concentric and single fiber needle electrodes yield comparable jitter results in myasthenia gravis. Muscle Nerve. 2009;39(5):579-585. doi:10.1002/mus.21151

Cattaneo L, Cucurachi L, Pavesi G. Concentric needle recording of neuromuscular jitter in the temporalis muscle. Neurophysiologie Clinique/Clinical Neurophysiology. 2007;37(1):50-51. doi:10.1016/j.neucli.2007.02.001

Ertas M, Baslo MB, Yildiz N, Yazici J, Ge AE. Concentric needle electrode for neuromuscular jitter analysis. Muscle Nerve. 2000;23(5):715-719. doi:10.1002/(SICI)1097-4598(200005)23:5<715::AID-MUS8>3.0.CO;2-V

Papathanasiou ES, Zamba-Papanicolaou E. A comparison between disposable and reusable single fiber needle electrodes in relation to stimulated single fiber studies. Clinical Neurophysiology. 2012;123(7):1437-1439. doi:10.1016/j.clinph.2011.10.046

Benatar M. A systematic review of diagnostic studies in myasthenia gravis. Neuromuscular Disorders. 2006;16(7):459-467. doi:10.1016/j.nmd.2006.05.006

Downloads

Published

2025-03-22

Issue

Section

New Discoveries and Original Research

How to Cite

Mandeville, R., Patterson, A., Luk, J., Eleanore, A., Garnés‐Camarena, O., & Stashuk, D. (2025). Near Fiber Electromyography in the Diagnosis of Myasthenia Gravis: NFEMG in MG. RRNMF Neuromuscular Journal, 6(1). https://doi.org/10.17161/rrnmf.v6i1.21795